Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Green Tiles: Renewable Energy One Step at a Time

Pavegen's research into green technology, sustainable energy sources, and clean, renewable energy alternatives led to the development of Pavegen tiles—and an exploration of the potential offered by kinetic energy harvesting. Image: Pavegen, used with permission.
The 2012 Olympic Games are being held in London, England, this summer. It's an event for which athletes spend years preparing and training. For competitors, the quest to bring home the gold is a driving force, but for environmental scientists and engineers like those who work at Pavegen, the 2012 Summer Olympics are a chance to shine a global light on the power and potential of renewable energy—one footstep at a time. Pavegen has been monitoring test installations of its tiles locally, including at a Kent-based school, but the world will be watching as a small number of tiles capture the kinetic energy of thousands of passing footsteps during the Olympic Games and convert that energy to electricity.

A Bright Idea

For those who walk over a Pavegen tile, there is the potential for an immediate moment of awareness—my step just created a tiny bit of electric energy. That moment is reinforced by the fact that each tile contains a "luminaire," an embedded light which glows when it is walked across, a process that uses a small amount of the energy generated by each step. The walker sees the glow and becomes a conscious part of—and participant in—the process of renewable energy generation. According to Pavegen, the power harnessed by the tiles is suitable for off-grid power applications like street-lighting and signage.

Making a Difference

The success of the tiles, both in capturing, converting, storing, and re-deploying the power created by passersby, and in generating increased public awareness of the process, will play out along with the games. If Olympics visitors and pedestrians are aware of the potential power of their steps, will they take more steps? Will children race back and forth across the tiles to help rack up just a bit more stored power? It remains to be seen, but the concept is undeniably engaging. It's exciting. It's forward-thinking. It's creative. It's a real-world application of "community" applied to a real-world problem. And the idea is cool--both in the abstract and in the physical design. Even in prototype, these tiles have the kind of look-and-feel that may win people over as an appreciation of design aesthetics and environmental consciousness come together.

The idea of these tiles opens up avenue upon avenue of "what if" thinking. If the tiles work—and if they can be produced cost effectively—it would seem there are an infinite number of possible applications. Think how many public spaces receive millions of footfalls each day as people move throughout their days. As Pavegen notes on their website, "up to 52,000 people per hour pass through busy train stations," and "the average person takes around 200 million steps in their lifetime." That's a lot of kinetic energy that currently dissipates into nothing. If Pavegen's tiles pan out, those footsteps could help change the way cities and communities think about powering lower-level applications. Even those not willing to walk a few feet out of their way to make an environmental contribution may end up a part of a larger alternative energy solution—intentionally or not!

Looking Ahead

It's an exciting technology, and one I'll be watching both at the summer games and after. With my increasing awareness that my desk-based work keeps me far more sedentary than even the 10,000 "steps" a day recommended for a healthy lifestyle, the potential of an energy source that both encourages and acknowledges public involvement looks very compelling.

Making Connections

Students can get a head start on the debut of these tiles at this year's Summer Olympics by spending time exploring the properties and principles of kinetic energy. How can it be collected? How can it be transferred or converted? How can the new energy be stored?

The following Science Buddies Project Ideas pave the way for students looking to "step" into this area of science and research:

Science Buddies Science Activities

Science Buddies and Autodesk for Student STEM Exploration

Hands-on engineering got a boost of balloon power with the fun 2015 Fluor® Engineering Challenge. Congratulations to everyone who joined the challenge and shared their creation! Take a look at some of the great entries!

A recent robotics workshop gave students in New Jersey the opportunity to experiment with 3D design using Autodesk® Tinkercad® and then to use their custom parts in their robots.

School and family science weekly spotlight: What happens when you heat up or cool down a bunch of molecules? Do rubber bands behave as you might expect?

This year, give your hardboiled eggs a twist and turn ordinary ovoid hardboiled eggs into fun shapes! The trick to the transformation is understanding the science behind the process of hardboiling.

School and family science weekly spotlight: mix up your own bubbly drink and experiment to find just the right combination of ingredients.

As winter turns to spring, farmers are preparing to plant this year's crops. For some, tilling their fields is a thing of the past.

Your Science!
What will you explore for your science project this year? What is your favorite classroom science activity? Email us a short (one to three sentences) summary of your science project or teaching tip. You might end up featured in an upcoming Science Buddies newsletter!

You may print and distribute up to 200 copies of this document annually, at no charge, for personal and classroom educational use. When printing this document, you may NOT modify it in any way. For any other use, please contact Science Buddies.