Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Soft Robots: Alternative Robot Design

Robotics engineers are experimenting with soft robots and robots modeled after biological organisms. With a squishy project at Science Buddies, students can get in on the action and test their own soft, air-powered, robot.

A recent story in MIT News shows off a cool robotic fish and highlights the softer side of robotics. This new wave of robotics research explores the benefits and possibilities of robots that sport softer, less angular exteriors, designs often inspired by biological systems and organisms.

Designers of soft robots, like the robotic fish developed by the Distributed Robotics Laboratory, take a different approach to constructing the robot's exoskeleton and thinking about how the robot will move and interact with its environment. For example, a soft robotic fish, modeled after a real fish, can bump into things in its environment differently than a more traditional hard and angular robot. A soft robot may also be able to navigate areas that a more rigid-bodied robot cannot, and a soft robot that runs into something may cause less harm and suffer less damage.


Making Connections

Students curious about robot design and about soft robots can get started exploring principles of soft robotics by making their own gripper robot. In the Squishy Robots: Build an Air-Powered Soft Robotic Gripper robotics engineering project, students use a 3D printed mold and liquid silicone rubber in the construction of a gripper that can curl around and "grip" an object. What advantages does this soft-bodied construction have over other kinds of robotic grippers?

procedural photos from soft robotics student engineering project
In the Squishy Robots robotics engineering project idea, students use a 3D printed mold to make a silicone robot that they then power by air to use as a gripper.

For a look at creating a more humanistic robotic hand, see the Grasping with Straws: Make a Robot Hand Using Drinking Straws project. Using straws, students are challenged to design and construct a robotic hand, with bendable appendages, that works using a system of threaded joints. How many "fingers" does a robotic hand need? At how many points does it need to bend? What mechanism will cause the hand to bend, move, and grip?

Understanding and identifying the need or task for a robot is important in making robot design decisions. What does the robot need to pick up? How small are the items? How heavy are they? What does it need to do with them once it has grabbed them? Other questions to ask involve where the robot will be used. A robot being used in an underwater environment, for example, will have very different design requirements.

These are questions and issues engineers must consider as part of the engineering process when designing a robot. Will the best solution be hard or soft? Experimenting to better understand how varying approaches work is a first step for students getting started with robotics.


Additional information:


April 5-13, 2014 is National Robotics Week!

Science Buddies Project Ideas in Robotics are supported by Symantec.

Science Buddies Science Activities

Science Buddies and Autodesk for Student STEM Exploration


thumbnail
What are your chances of getting the flu this year? Discover how your immune system and the flu vaccine work together to keep you healthy.

thumbnail
How much weight can a balloon-powered vehicle carry? Find out with this year's 2015 Fluor® Engineering Challenge. Enter for a chance to win money for your school!

thumbnail
School and family science weekly spotlight: drop candy hearts into soda for a Valentine's Day-themed chemistry exploration.

thumbnail
School and family science weekly spotlight: explore ocean currents with your own mini ocean model.

thumbnail
School and family science weekly spotlight: learn more about nanotechnology with a hands-on paper-based experiment.

thumbnail
In the days leading up to the big game, in the days after, or even during off-season, you can kick around sports science concepts with your student sports fans.



Your Science!
What will you explore for your science project this year? What is your favorite classroom science activity? Email us a short (one to three sentences) summary of your science project or teaching tip. You might end up featured in an upcoming Science Buddies newsletter!



You may print and distribute up to 200 copies of this document annually, at no charge, for personal and classroom educational use. When printing this document, you may NOT modify it in any way. For any other use, please contact Science Buddies.