Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Recently in Science Fair Project Ideas


Tie-Dye Using Permanent Markers Chemistry Activity and DIY Project  / Hand-on STEM experiment

In this week's spotlight: a chemistry-focused family science and craft activity that let's students explore the concept of solubility while using permanent markers to decorate a T-shirt (or piece of fabric). Permanent markers are designed to be lasting, so what happens when you add water? What happens when you add alcohol? Does the marker ink react the same to both water and alcohol? Put these questions to the test in a fun hands-on science experiment. At the end of the project, students will have designed a cool tie-dye piece, too. This is science you can wear!

Permanent marker-based tie-dye is a fun spin on traditional tie-dyeing and a lot less messy! (But do be careful, permanent markers are called permanent for a reason.)

Families can explore solubility and marker-based tie-dye in the following Science Buddies activity at Scientific American:

For additional science exploration related to markers, the dyes in markers, and tie-dye, see the following projects at Science Buddies:




Categories:

 

Brushbot from the Bristlebot robotics kit at Science Buddies
Above: The Brushbot is one of the three robots kids can build using the Bristlebot Kit from the Science Buddies Store.

A brand new Bristlebot Kit launched today in the Science Buddies Store. With this new kit, students can experiment with three styles of introductory robots and learn more about robotics engineering. The kit has been specially designed to make building the robots easier for students to do independently—and fun!

The new Bristlebot Kit contains components for use with several Science Buddies Project Ideas and activities, including:

For more information about introducing robotics engineering projects to K-12 students at school or at home, see the following:



Support for resources and Project Ideas in robotics is provided by Northrop Grumman and Symantec Corporation.

Categories:

 

Are you a picky eater? Maybe there is a scientific reason for your reluctance to eat certain foods even if you know they are good for you. If you are going to a casual family gathering this summer or have friends over, you might be able to have some tongue-dyeing taste-testing fun in the name of science!

Super taster science experiment
Above: With an easy and colorful science experiment, you can see if you are a super taster. Be sure to have a magnifying glass on hand!

Chartreuse pants and a flashy orange shirt? Your taste in clothing may say a lot about you and your personality. If you have a really quirky sense of style, you might even have heard the expression, "your taste is all in your mouth"! How about your taste in food? Will you eat anything, or do you gravitate toward certain kinds of foods and steer clear of others—even ones you know are good for you? Do you like things salty? Do you prefer sweet? Neither? What about sour? Do you like the taste of cinnamon? When you taste a cookie, can you isolate and identify lots of different ingredients? Or do you just taste "cookie"?

From the time kids first start eating solid foods, most parents try to introduce a wide range of healthy and colorful foods in addition to staples like oatmeal and rice. Despite the best airplane-in-the-air-coming-in-for-landing maneuvers, spooning pureed veggies to a toddler can be a very messy process, one involving a good bit of thrown and spat food. As kids grow, more and more veggies appear, as do a wide range of other foods, herbs, and spices.

Things may get less messy, but despite repeat attempts to make kids eat their veggies, some kids (and some adults) never do learn to stomach their broccoli. Some kids (and some adults) won't touch grapefruit. They may, in fact, always seem to be super picky compared to others who will seemingly eat just about anything. It may seem like they don't have "enough" taste, but the opposite may be the case. Picky eaters may, in fact, be picky because they have more rather than less sense of taste!


Tongue Science

The number of taste buds in the mouth varies from person to person. People with a larger number of taste buds are classified as supertasters. On the other end of the taste spectrum are non-tasters, and the rest of us average tasters fall in between.

Supertasters taste things with far more specificity and intensity than average tasters or non-tasters. They are especially sensitive to certain kinds of tastes like bitterness, and some foods, like broccoli and kale, are ones that supertasters can't stand. They don't just dislike green veggies, however. There are a wide range of foods, spices, and flavors that may trigger a supertaster's resistance, including things that are sweet or salty.

Scientifically speaking, a picky eater might, in fact, be a supertaster, and finding out is easy to do with a hands-on science project.

The Do You Love the Taste of Food? Find Out if You're a Supertaster! human biology science project outlines a simple experiment kids can do using food dye and office supply store paper reinforcement rings. Rather than just recording how things "taste," in this project, students quantifiably measure and compare people's taste buds. Color a ringed area of the tongue with a drop of food dye, and you can count the number of papillae in the area. Match that number up to a chart, and you can see where your taste sensitivity falls.

Maybe you are a supertaster! But what about the rest of your family? How do the numbers compare among age or gender groups? This is a fun science activity to do with friends and family. You will all end up with a colorful tongue spot for a while, too!


More Taste Buds Fun

You can continue taste-test science this summer with your friends and family with science projects and activities like these:


Categories:

 

Stay up late, or get up really, really early to catch nature's annual fireworks display. Students and families can extend Perseids fun with a hands-on science exploration of parallax. How far away are the things we see in the sky?

Stargazing parallax science activity / Hand-on STEM experiment


Each August, a much-anticipated nighttime show plays live in our skies: the Perseid meteor showers. This annual event offers you the year's best opportunity to see meteors streaking across the sky, so long as you are willing to be awake well after midnight!


Cosmic Collisions Make for Great Light Shows

Why does the Perseid meteor shower happen each August? Because that's the point in our orbit around the Sun when we are crossing the orbital path of Comet Swift-Tuttle. As Comet Swift-Tuttle travels through space, it leaves behind bits of rock and ice called meteoroids. Some of these fast-travelling meteoroids burn up when they hit Earth's atmosphere. The bright light that we see when this happens is called a meteor. You may have heard some people call these "shooting stars," but meteors aren't stars at all, just burning space debris!

While it is possible to see a meteor on any night, so long as you are looking in the right place at the right time, the Perseids are special because as Earth crosses through the path of Comet Swift-Tuttle, lots of meteors are likely to be visible in the sky, so many that it is called a "meteor shower."


Maximize Your Chances of Seeing a Meteor

Most years, scientists would recommend that you view the Perseids during the "peak" of the showers, which is the time when they expect the most meteors to be visible in the sky. However, this year the moon will be so bright during the expected peak days of August 12 and 13, that scientists are suggesting you head outside in early August.

Your best chance for seeing meteors is in the few hours before dawn, as far away from city lights as possible. Although a blanket or reclining chair will keep you comfortable, the only "tool" that's required is patience. Good things come to those who wait!


Sky Science Connections for Students

Students and families interested in the Perseids, in stargazing, or in astronomy in general can ask space science questions and experiment with Science Buddies astronomy science projects and family science activities.

For example, with a hands-on backyard setup using hula hoops, students (and families) can explore the relationship between the distance of an object and the perspective from which the object is viewed. The way an object appears to move or shift when you look at it from two different positions is known as parallax and is an important concept in understanding how astronomers determine how far away things are in the sky. Both a student science project (suitable for a science fair) and a shorter family science activity are available:

These family science experiments don't require the night sky or a telescope, but by exploring parallax, students can better understand how scientists measure how far away things are in the sky.

For more fun family science that connects with this month's Perseids, see Meteor Science: Weekly Science Project Idea and Home Science Activity Spotlight. For added inspiration for student astronomers and space enthusiasts, see the Galactic Curiosity: Fifth Grade Student Charts a Science Course for the Stars student science success story. The Satellite Science: How Does Speed Affect Orbiting Altitude? project idea based on the student's fifth grade astronomy experiment is now part of the Science Buddies directory of free project ideas!


Categories:

 

Now you're cooking solar oven from pizza box science activity / Hand-on STEM experiment

In this week's spotlight: an energy-focused family science activity that doubles as an alternative energy experiment and a recycling project. Using a pizza box (or other shipping box), foil, a few other readily available materials, and the power of the sun, you can make a functional solar-powered oven. Cooking will take longer than in a kitchen appliance, but with some planning, you can cook a meal or prepare a campsite batch of s'mores with your own homemade solar oven! How does a solar oven work? How does the design of a solar oven work to trap and use radiated heat? Build your own to find out. You might discover a solar oven has something in common with a greenhouse, too!



Categories:

 

Holey Porous Rock Science!


Examining rocks can be a springboard for a fun family science exploration. With different kinds of dried beans, plastic cups, and water, kids can model rocks and observe the way different sized particles in rocks affect how much water a rock can hold.

Rock porosity science project with rocks modeled from cups of dried beans

What do rocks and sponges have in common? Rocks may be hard, and sponges may be soft, but both have pockets of empty space. Surprised? It may be easier to see the pockets in sponges since most sponges are covered with holes, but if you toss a pumice stone in water, it will float—because it has many pockets of empty space, just like a sponge!

Some rocks are more like a sponge than others though. It depends on their porosity.

Porosity is the word we use to talk about the volume of empty space in an object compared to the total volume of the object. When the particles of a rock are small, they may be packed together closely with very little space between them. Such a rock is defined as not very porous. When the particles of a rock are large, there may be more space between them because they don't fit together as tightly. This makes the rock more porous.


Science Activities Mean Fun for the Whole Family

Porosity is a concept that may be hard to imagine, but with the quick and easy How Particles Affect Porosity science activity, students can make a model of a rock to observe firsthand what porosity means and how it works.

That's what Sherry Smith, a Science Buddies mom, decided to do when she was looking for a fun science activity that would appeal to both her 10-year-old daughter and 4-year-old nephew.

"Both of the kids are interested in rocks, and the techniques of Science Buddies' porosity activity seemed fairly simple," said Sherry, "so I thought it would work with my young nephew."

To build their model, the kids filled one plastic container with large dried beans and another plastic container with small dried beans. In the project, the different-sized beans represent different sizes of rock particles. Each container becomes a model for a "rock." The next step for Sherry and her students was to carefully measure how much water they could pour into each container. Which model rock holds more water? Why?

On their first try, some of the water spilled, says Sherry, so they had to start over, but in the end, their experiment was a success. The kids were able to see how the difference in the porosity of each model rock made a difference in how much water each cup held.


Learning on Different Levels

Overall, Sherry thinks that the porosity project is a great way for kids of different ages to share a memorable science experience. "While my nephew perhaps had trouble understanding that the beans were modeling porosity, he enjoyed acting like a 'real scientist' and was very careful pouring the water on the second try."

Sherry's daughter, on the other hand, was able to connect the concept of porosity to what she had learned about the rock cycle in school, particularly that the porosity of a rock can change over time due to pressure.


Modeling Rocks in the Classroom

Like Sherry and her family, students and families can experiment with porosity using the procedure in the How Particles Affect Porosity classroom science activity. Teachers looking to replicate this hands-on geology experiment in the classroom will find step-by-step guidance, including downloadable educator and student guides. The activity only takes about twenty minutes, including teacher prep time, and lets students explore how and why some rocks really soak up liquid while others do not.

Check out Science Buddies' new Science Activities for All Ages area to discover more fun science experiments and activities for the whole family! Teachers can also browse additional classroom activities.


A Deeper Look at Porosity

Students looking for a geology science fair project related to rocks can continue the exploration with the Porosity and Particle Size project idea.





Support for Geology resources and Project Ideas at Science Buddies is provided by Chevron.

Categories:

 

Finding ways to improve a product often means breaking it first and then brainstorming ways to make the product better so that it will last longer. Students can experiment with the engineering design process—and the ways in which engineers design and test new solutions—by trying to improve the durability of a simple handheld device. Making a calculator ironclad might make it harder to break, but would a customer like the new-and-improved version?

Calculators after crash testing during science and engineering project
Above: A device may show various kinds of damage after being put through various kinds of product testing. Testing may help engineers find ways to improve a product's design and durability.

Have you ever seen an advertisement for a product that brags about the fact that it is so strong that you can even drive a car over it, and it will still work? You might wonder why the product would ever be at risk of being rolled over by a car, but such a claim is meant to highlight an important selling point for many products—durability. How much wear and tear can an item withstand? For consumers, this is an important question. When it comes to buying certain kinds of products and devices, like electronics, customers want a product that will last because the longer it lasts, the better value it may prove to be.


Finding the Breaking Point

Making something better sometimes depends on first seeing what it takes to break, tear, or destroy an object.

Autodesk DigitalSTEAM Workshop mobile accessory challenge

Designing a Mobile Accessory

Students interested in designing protective cases can take this project a different direction by using 3D design software from Autodesk. The Mobile phone accessory project in the Digital STEAM Workshop challenges students to bring their ideas about phone accessories into reality using Autodesk® 123D® Design. Students are challenged to design an accessory small enough to fit into a person's pocket and made from plastic. What phone gadget, tool, or accessory can you envision that you think people would love to have for their phones?

Using 123D Design, students digitally design an accessory that can be made using additive manufacturing, the process used in 3D printing. For additional information about 3D printing, see 3D Modeling Layer by Layer: A Glue It Together Introduction to 3D Printing.


Premier Design Tools for Educational Use

Autodesk gives students, educators, and educational institutions free access to professional design software, creativity apps, and real-world projects. For more information, details about educational use, and to download software, visit the Autodesk Education Community.

If you try the mobile phone accessory Autodesk Digital STEAM Workshop challenge, show us the accessory you design!

It may sound counterintuitive, but for product engineers, finding ways to improve an item in terms of its durability often means first identifying weak spots. After she knows where the potential pitfalls are—What could happen? Where will it break? What kind of stressor or use is too much?—a product engineer brainstorms possible solutions, makes prototypes, and puts these new versions through use tests to see if the modifications bring improvement.

Does the improved product bring corresponding and measurable improvements in terms of durability? Do the changes add to the price of the product? Do the improvements change the size (footprint) or appearance of the product? Are the changes ones customers will like in terms of visual appearance as well as in terms of the added protection? All of these are questions a product engineer has to consider when trying to improve an item.

Cell phones are a great example of a device where durability matters. Because they are always with us, cell phones are often subjected to lots of bumps, accidental drops, spills, and even dunks. Whether the phone falls to the concrete when you get out of the car, drops to a hard floor, or gets crunched between hard objects, you hope that the phone comes out unscathed.

In the past, cell phones have not always held up well, but today a dropped phone doesn't always equal death of the phone. Hopefully, improvements in the design and manufacturing of the type of cell phone you carry have given it a stronger profile—added durability.


Putting Engineering Design in Action

In the new Crash! Can Cell Phones Survive a Drop Test? project idea, students get hands-on with the engineering design process as they simulate the steps that might go into improving a product like a cell phone.

While a science fair project that tests and then improves actual cell phones might be cool, crash testing a bunch of cell phones is not practical for most students. Using inexpensive calculators instead keeps project costs down but still lets students model the steps involved in product testing and development. How durable is a cheap calculator? Can it be improved, and is the improvement worthwhile in terms of the form factor and price of the device?

Students first put calculators to a drop test to assess (and quantify) starting durability. Then, they brainstorm design changes to try and address weaknesses they observed during their drop tests. After making prototypes of their new and improved products, students put the new models to the same drop test to see if the design changes made a difference.

What kinds of changes might you make to better protect the calculator from drop zone damage? Changes in materials are up to the student product engineer, so bring your creativity, your innovative ideas, and your willingness to crash test a bunch of calculators!


A Career in Product Engineering

Students who enjoy the idea of creating and improving products—and even breaking them first on purpose to pinpoint areas of weakness and figure out what might be fixed or improved—may enjoy learning more about product engineering as a career path. The following career profiles highlight career options for a student with an interest in building and engineering: Industrial Engineer, Mechanical Engineer, and Materials Scientist and Engineer.


Science Buddies Project Ideas in mechanical engineering are supported, in part, by Motorola Solutions Foundation.



Categories:

 

Melting Ice: Weekly Science Activity


Melting ice chemistry science activity / Hand-on STEM experiment

In this week's spotlight: a chemistry family science experiment that explores how different substances may lower the freezing point of ice. By adding sand, sugar, and salt (separately) to ice, students observe how long it takes the ice to melt. Do any of these substances make the ice melt more quickly than it does by itself? In this family science activity, you can find out—and find out why. Follow this experiment up with the Science Buddies activity on making homemade ice cream for a tasty, related science add-on! In one project, you will melt the ice. In the other, you'll be working to make things colder!




Categories:

 

For families living in drought conditions, careful monitoring of water usage is especially important. With hands-on science and engineering projects, students can investigate water-saving strategies and science and engineering related to water conservation.

Folsom lake drought 2014
Above: The effect of drought can be seen in the above photo of Folsom Lake. Image: California Water Science Center, U.S. Geological Survey.

Remember "Ring around the rosie" and "Rain, rain, go away"? Familiar with the "jinx machine" saying? You may recall these singsong chants from your own childhood or from watching your students on the schoolyard. Kids grow up repeating lots of songs and fun sayings—rhymes that, for better or worse, stick.

Today's California kids have added a new one to their repertoire—"If it's yellow, let it mellow. If it's brown, flush it down." It's catchy and a bit gross. It's got all the markings of classic potty talk. But these kids are talking about flushing strategies at school—in the name of water conservation.

When my elementary school student came home last year spouting "if it's yellow," it was new to me. It was a startling rhyme, but it does stick with you. As California's drought continued to worsen and the threat of a real water crisis grew, I started thinking more about the saying and discovered it is actually more than playground potty talk. As one strategy for helping reduce consumer water usage, the "if it's yellow" approach may have statistical merit.

Today, California's drought situation has gotten even drier, so much so that the state will soon be fining consumers for certain kinds of unnecessary water usage. Washing cars, spraying off sidewalks, and watering plants are all culprits for excess water usage. You probably won't find kids running through a free-flowing sprinkler system this summer in many California neighborhoods either.

Smart family water practices, like smart family electricity practices, can make a difference. Beyond flushing, there are lots of drips and drops of water in a typical day that the average family could save, and small-scale, house-by-house changes can add up to significant savings.


Water-saving Science

The threat of running out of water may seem distant and hard to fathom, but scientists are predicting California's drought is far from over. As families and schools talk with students about water conservation, it is important to think about household practices. Even tweaking simple routines like brushing teeth can make a difference. Do you leave the water on when you brush your teeth? How much water might you save if you turned it off while brushing and then turned it back on at the end?

These kinds of questions can lead to fun, informal science investigations at home or school and pose engaging real-world math problems for kids to work through. Collect the water during a normal teeth brushing session and measure it. Then collect the water during a session where the water is turned off during most of the two minutes of brushing and measure it. Multiply the amounts by the number of times a day each person in the house brushes. Multiply those numbers by days and then weeks.

Map of US drought 2014 July

Innovative Engineering and Design

California's water crisis is mounting, but California is not alone in its water shortage. The U.S. Drought Monitor map shows that roughly a third of the country is currently experiencing some level of drought.

As everyone from state officials to families to local farmers look for new approaches to improve water usage efficiency, stories of innovative solutions highlight the ways in which applied engineering and technology can make a difference at home and around the world. For example, in May, NPR reported on an unusual bamboo structure called the WarkaWater designed to gather water from the air.

You can keep extrapolating by multiplying by households or city populations. How do the numbers compare? Then do some research to give those numbers real-world meaning. You might compare how many gallons of water your toilet uses per flush, for example, to the water being used brushing teeth. How do baths and showers compare?

As you and your kids take a closer look at how you use water in the house, think about things like indoor plants, running the dishwasher, rinsing dishes, washing clothes, filling the coffee pot, boiling pasta, and making ice. How much water do you really use? How many times is the water running unnecessarily or for longer than it should? Is there anyway to capture and reuse some of the household water that is otherwise wasted?

The following science and engineering projects guide students in thinking about and exploring different aspects of water conservation and drought:

For more information about strategies you can use at home, see the Save Our Water site's collection of tips for indoor and outdoor water conservation.


Making Connections

Students in California (and in many other places in the U.S.) are hearing a lot about drought, but water is still available. In some areas around the world, access to water is even more seriously limited. Exploring water conservation, filtration, and decontamination strategies through hands-on science projects helps students better understand local and global water supply issues.

Projects ideas like these guide students in investigating strategies for decontaminating and desalinating water:

Categories:

 

Civil engineers work on all kinds of construction projects that help shape communities and cities and help solve problems and challenges in those areas. Sometimes, those challenges involve reconfiguring existing space in unexpected new ways, like turning parking places into parklets. These little green pockets of social space provide interesting challenges and opportunities for engineers, designers, and planners. With software from Autodesk and a fun Digital STEAM Workshop challenge, students can design their own parklets and see what is involved in reimagining a few parking spots as a gathering or resting spot—with a small budget and tight space requirements!


3868 24th Street Parklet (hosted by Martha Brothers)
Above: The 3868 24th Street Parklet (hosted by Martha Brothers) sits in place of a few parking spaces. Photo: San Francisco Planning Department.

Parking in San Francisco is rarely easy. A driver may circle a destination multiple times hoping to score a treasured meter space. A challenge to begin with, city parking is becoming even more difficult as parking spaces here and there are repurposed as social spaces.

Across the city, coveted parking spots have gradually been transformed into no-parking park zones—parking spaces for people, not cars. On a corner of Haight Street, for example, there is a small area of benches that looks like an extension of the sidewalk and juts right out almost into the street. At first glance, you might look over and see it as a little niche seating area, a little resting place, an extra spot to hang out and enjoy a scoop in a cone from the nearby Ben and Jerry's. Look just a bit closer as you pass, and you will realize that the seating area, the bit of green, sits where a few parking spaces formerly waited to eat up meter money.

It's the age of the parklet.


Exit Parking, Enter Parklet

In San Francisco, turning parking spots into social spots is a movement that has gained momentum and both community and city support. The Pavement-to-Parks site contains a section devoted to parklets, and an eighty-six-page PDF booklet describes the role of a parklet and the process of moving from idea to permit to implementation. The fun "Parklet-OMatic" game board-style infographic flowcharts the process from start to finish. Those finishing the process with a successful permit are instructed to "Keep it clean. Water the plants. Renew in one year."

According to the Parklet Manual, a parklet that stands in the place of extra parking spaces may support and foster social consciousness, lifestyle and behavior, and city change. A parklet, says the manual, can help: reimagine the potential of city streets, encourage pedestrian activity, encourage non-motorized transportation, foster neighborhood interaction, and support local businesses.

Despite the tighter parking scene, the city loves parklets, and there is currently a waiting list for parklet applications.


The Parklet Phenomenon

While the origin of the parklet may lead back to San Francisco and a one-day temporary parklet experiment, the city is not alone in its interest in reclaiming pavement for people. Chicago calls these little spaces carved into the city "people spots." Seattle, too, has its own government parklet page, with a dotted map of existing or proposed parklets that looks like a transit map.

Whether you view them as small injections of green into a cityscape, a subtle reminder to slow down, or just an ingenious way to make the quest for parking even tighter, parklets are a fascinating societal phenomena and example of civil engineering.

While parklets vary in terms of their overall "flavor" or vibe, they typically follow certain requirements. Size, especially, is key. A true parklet replaces a few parking spaces, so sizing parameters are tight. There is not a lot of wiggle room. Location, too, matters. As San Francisco's Parklet Manual makes clear, there are a number of criteria for selecting a location for a proposed parklet. (You can't just plop a parklet into any parking space.)

Cost is also a factor.


A Perfect Parklet

What kind of parklet do you envision? Do you imagine wooden benches and planters? Do you see natural seating spaces or bright umbrellas and canopies? How do you think people will use the space? Will they sit and talk? Will they meet up for a game of street chess? Will people eat their lunch?

The design of a parklet will play into how the space is used and what kinds of activities and interactions it invites. Multi-use structures, for instance, might facilitate eating as well as provide a surface for other activities. How will you fill the space?

Imagining how you will "decorate" a parklet is part of the fun of the process. But there are many stages of planning and consideration that happen before you can move benches into place.

After choosing a location, one of the first steps is doing a site plan for the parklet. The plan needs to account for the footprint of the parklet (its size and shape rather than its contents) as well as the surrounding parking spaces, street traffic flow, and buildings. Later, designers work on drawings or computer renderings that show what the parklet looks like, including approaches to the foundation, the enclosure (remember, the parklet may be right next to moving traffic), and the cool things that will give the parklet its unique flavor and feel.

So what would you do if you could convert a few parking places in your own city into a parklet?


Experiment with Parklet Planning

Using Autodesk's AutoCAD software (free for student use with an educational license), students can design a parklet and experiment with a world-class computer-aided design (CAD) tool. The parklet challenge on the Autodesk Digital STEAM Workshop site puts students in the middle of city planning—on a very small scale...the size of a few parking spaces.

In the challenge, students are given parameters they must meet as they create their parklet solutions. Starter files are provided, and students can further explore the challenge through a set of real-world videos that follow a designer through the process of brainstorming, planning, and testing a solution. These videos help students see steps of the engineering design process in action. (See the Engineering Design Process guide at Science Buddies for more information on the engineering method and design process.)

After creating a parklet design for the challenge, students can upload it to share and show it off to the Digital STEAM Workshop community. Who knows, your parklet design might be one you want to share with your city, too!


Premier Design Tools for Educational Use

Autodesk gives students, educators, and educational institutions free access to professional design software, creativity apps, and real-world projects. For more information, details about education use, and to download software, visit the Autodesk Education Community.


What Will You Make?

If you are already a user of Autodesk software, we would love to hear from you! If you take the Autodesk Parklet challenge, please let us know. We would love to see what you build, design, and explore using Autodesk design tools. Show us your parklet!

Categories:

 

As the number of medications, both over-the-counter and prescribed, continues to rise, pharmacists play an increasingly powerful role in helping ensure patient wellbeing, safety, and quality of life. Is the medication you were prescribed safe for you? Beyond an apple a day, feeling better may require advice from a pharmacist!

2014-blog-pharmacist-bottles.png

Whether you need an antibiotic to help fight an infection, powerful cough syrup, insulin, or another doctor-ordered medication, when it is time to pick up your prescription, you probably head to a local pharmacy. Your pharmacy may be a neighborhood business, a branch of a drugstore chain, or a pharmacy nestled inside a large grocery store. Your pharmacy may even have a convenient drive-through or a vault from which you pick up your medicine without waiting in line, or maybe your pharmacy offers 24-hour service.

Regardless of where your pharmacy is or how you pick up your medications, the person who filled your prescription—counted out or measured the quantity—is a pharmacist. Someone else may ring you up. Someone else may have taken the prescription from you when you dropped it off. But the pharmacist is the one ultimately responsible for ensuring you receive the right medicine, the right strength, and the right quantity, all matching up to your doctor's orders.


Recognizing Patients as Individuals

It is easy to think of being a pharmacist as simply a job of shuffling pills into safety-lock bottles, but pharmacists do much more than that. Pharmacists also help patients understand how to take a new medicine and warn them of possible side effects. Pharmacists also answer questions about generic versus non-generic medications and changes in medications. If a pill changes size, shape, or color, your pharmacist may tell you before you even have a chance to notice. Pharmacists need to know as much as possible about a vast number of available medications. But pharmacists also need to know you—an individual patient.

Just because a doctor prescribes a medicine to treat a specific problem doesn't mean it is the right medicine (or dosage) for a patient. Every patient is different. Each patient has her own medical history and medication history. Before a prescription is filled, a pharmacist may catch a problem with the prescription or with the combination of the prescription and a specific patient's health history. Computer profiles help flag possible problems, but pharmacists are the ones who talk directly with patients to explain any possible problems and relieve any concerns.


Safeguarding Patient Health

A recent NPR story covered the emergency department of a children's hospital in Dallas, TX, where pharmacists work, around the clock, to ensure the accuracy of prescriptions being made to treat patients. This kind of safety net may help decrease prescription-related problems, problems that reportedly cause thousands of deaths each year.

In an emergency room setting, pharmacists can make a tremendous difference, but even beyond critical care and emergency department scenarios, pharmacists are predicted to play an increasingly important role in day-to-day healthcare. Variables like increased life expectancy, increased preventative healthcare services, increased number of people with chronic conditions, increasing numbers of available prescription drugs, changing medical insurance policies and ongoing changes in prescription coverage, and ever-increasing medical knowledge put the pharmacist in a pivotal position between the prescribing doctor and the patient—a position where precision and accuracy must go hand in hand with an ability to synthesize pharmaceutical information, spot potential big-picture issues and complications, and convey necessary information to patients.


Making Connections

Students interested in human health and biology, medical biotechnology, and medicine, can explore science questions related to health issues and medications in science projects like these:

To learn more about the educational requirements, daily tasks, work environment, and career outlook for pharmacists, see the Pharmacist career profile, part of Science Buddies's science careers area.





Support for Science Buddies Career Profiles in chemistry-related fields provided by Astellas USA Foundation.


2014-blog-pharmacist-bottles-300x150.png

Categories:

 

Seeing Is (Not Always) Believing!


Visual illusions and other optical puzzles are fun for families to share and explore. With hands-on science projects and activities, students can create and test their own visual illusions. For more advanced exploration, a new electronics science project guides students in creating a mesmerizing infinity mirror that invites viewers to gaze into a seemingly infinite tunnel lit by a series of lights.

Visual illusion - Kanizsa Triangle
Image: Wikipedia.

How many triangles appear in the image above? The correct answer is zero, but your brain probably perceives several triangles because your brain is filling in information that is not actually present. Your brain is "interpreting" the image as a whole, despite what your eyes are actually "seeing." You probably see a white triangle atop of what you assume is a black outlined triangle. You may also argue there are other clear smaller triangles within the image as well! But this image, known as a Kanizsa Triangle, contains no triangles at all.

The Kanizsa Triangle is comprised of three "v" shapes and three "Pacman"-style, open-mouth shapes. The white triangle seemingly formed by the negative space is something our brain interprets even though it isn't drawn into the image. In fact, the "white" of that central triangle flows unimpeded into the white of the background. There is no defined triangle—other than the one our brain perceives.

The visual illusion created by the Kanizsa Triangle is one of a number of types of perceptual illusions, and, like sleights of hand that a magician might perform, visual or optical illusions are fun because they trick the eye and challenge us to understand how our eyes and brain work together.

How many dark dots appear in the following image?

Visual illusion -- Hermann Grid
Image: Wikipedia.

Did you have trouble isolating or counting the dark dots? The above image is a grid illusion, specifically a Hermann grid illusion. You will find similar versions with more boxes and more dots, but the problem of counting the dark dots remains because as your eye moves around the image, the dark dots seem to shift. In fact, there are no dark dots at all in this type of grid illusion, just white lines on a black field.

Visual illusions are engaging puzzles because they tease the brain. The brain and the eye don't agree about what they are seeing or how to interpret the information. Do you see an old woman or a young one? Do you see a rabbit or a duck? Do you see two vases or a face? In some types of visual illusion, you may see more than one image, your brain bouncing back and forth between possible interpretations as your focus shifts.

There are countless visual illusions to explore, and delving into the "why" we see (or think we see) what we see is a great way to learn more about the eye, the brain, and human biology and neurology.


Making Connections

Students and families can explore visual illusions with the Afterimages: The Colorful Tricks Eyes Play science activity. The activity, a simplified version of a longer, independent science project, helps students explore what happens when you stare at blocks of color for a long time, effectively fatiguing color-receptive cones in the eye. Better than a game of who can not blink for the longest amount of time, this fun science exploration challenges you to stare at something for a set amount of time.

Infinity Mirror Student Electronics Science Project

An Endless Tunnel?

How many LEDs do you think are used in the construction of the infinity mirror shown above? How deep do you think the infinity mirror is? You might be surprised! Get answers to these questions by making your own infinity mirror in the Explore Optical Illusions science project.

If you can do it without blinking, you may see something that isn't really there!

To explore other ways to experiment with afterimages, including combining fun computer programming tools and environments, like Scratch, see A Trick of the Eye for Halloween. A classroom-friendly exploration of afterimages is also available, complete with educator and student materials.


Electronics Fun with Illusions

While many familiar visual illusions are flat renderings designed to be viewed on paper (or on a screen), with a bit of creativity and electronics know-how, you can create cool dimensional optical illusions that will further challenge viewers to understand what they are really seeing. In a mirror at a carnival, for instance, you may appear either shorter or taller, or thinner or wider, than you really are. Or, you might wander through a fun house room of mirrors, looking for a way out.

A new electronics engineering project at Science Buddies guides students in creating an infinity mirror. In the Explore Optical Illusions: Build an Infinity Mirror project, students design and construct an infinity mirror from a cardboard box, a set of LEDs, and two mirrors. When activated, a viewer looking into the mirror will see what appears to be an infinitely long tunnel, a lit tunnel stretching far into the distance of the box. But the box is really just a shallow box!

Creating your own LED infinity mirror is a fun DIY electronics project. In the end, you will have a light-up optical illusion that will amaze friends and family!


Award-winning Optical Illusions

For more fun with visual illusions, check out the Dynamic Ebbinghaus visual illusion, the winning entry in this year's Best Illusion of the Year Contest. You can view all 10 finalists from this year's contest on the contest site. It is fun to look at the visual illusions and to read the descriptions that accompany each. Some of these are real eye puzzles!


Further Reading

For more information about visual illusions and other great examples, see:

Categories:

 

Sauces and marinades kitchen and food science experiment  / Hand-on STEM experiment

In this week's spotlight: a food sciences family science experiment that investigates the way different ingredients make a difference in how well a marinade sticks to food. In this science activity, students simulate the process of soaking a food in a marinade by doing a controlled study with tofu, food dye, and four different ingredients that might be found in a marinade recipe. Setting up a set of standards for what the tofu looks like when soaked in different levels of dye concentration makes it easy to evaluate how well the test marinades made with different ingredients stick to the tofu. Based on this kitchen chemistry experiment, cooks of all ages can make more scientific decisions about how to best mix up a marinade or tweak a favorite recipe for even more sticking flavor!


Categories:

 

Many popular video games involve aspects of city planning. Whether nurturing a small village or populating and running a sprawling city, kids can experiment with city planning on a variety of levels, from ensuring available resources to strategically positioning city protection. A fun SimCity science project from Science Buddies helps turn in-game city planning into a science experiment, one students can also use to enter the annual Future City competition.

2014-blog-simcity-suburbs.gif
Above: A "suburbs" image from a city created in SimCity.

City planning. As a kid, I don't think I gave much thought to city planning, urban design, and civil engineering. I was wowed by whatever local structures, landmarks, or skyscraping architecture I passed by or saw when on vacation, but, growing up in a small town, the intricacies of city planning were not on my radar.


Since then, having lived in and visited cities of all sizes, I have comes to appreciate and marvel especially at the networks of roadways and transportation paths that snake through and around metropolitan cities. Road planning fascinates me. But there is a lot more that goes into city planning than just streets and highways. Civil engineers work on transportation systems, but they also work on energy and water systems and all kinds of buildings and construction projects both for business and residential use.


Video Games and Virtual Cities

SimCity, a computer game devoted to virtual city building, first appeared in 1989. The popularity of the game led to several iterations and versions of the game. You may have missed the height of the SimCity craze back in the 1990s, but video game-based city planning and world building has continued to evolve and reappear as a theme and challenge in lots of games, including computer games, console games, mobile apps, and games integrated in social networks like Facebook.

Clash of Clans village planning and design
Above: In Clash of Clans, a popular mobile game, players design their village (or base) using an in-game editor and positioning elements to best protect their resources.


Whether set on a farm, medieval times, the present day, or in the future, many games rely on creative and strategic world building. Sometimes, games pegged as something else, especially tower-defense games, have a large element of world building. This plays out in different ways, depending on the game.

In some games, you grow a city by buying and upgrading things like housing, farms, mines, and social structures.

Autodesk Digital STEAM Workshop park challenge

Experiment with Planning City Spaces this Summer with Autodesk Online Challenges!

Two creative challenges on the Autodesk Digital STEAM Workshop encourage students to explore elements of city planning using computer-assisted design tools to design city parks. The Shape: Small Park Design challenge invites beginning designers to use Autodesk SketchBook Express to mock up a small city park that fits within a set of design and cost parameters.

The Urban Park challenge offers a more robust activity for intermediate students ready to experiment with a number of tools from Autodesk's software suite. Using Autodesk AutoCAD, Autodesk Maya, Autodesk Revit, and Autodesk Inventor, students work on a park design that will appeal to a wide range of ages, uses recycled materials where possible, does not exceed 3,600 square feet, and falls within a given budget for construction.


Premier Design Tools for Educational Use

Autodesk gives students, educators, and educational institutions free access to professional design software, creativity apps, and real-world projects. For more information, details about educational use, and to download software, visit the Autodesk Education Community.


What Will You Make?

If you are already a user of Autodesk software, we would love to hear from you! If you try one of these park planning Autodesk Digital STEAM Workshop challenges, let us know how it goes!
You may also be responsible for setting the taxes and making other decisions that are integral to how the city grows and functions. In some games, you have to build and upgrade social buildings in proportion to work spaces and residential housing in order to keep the city in balance, the residents happy, and the gold flowing.

In other games, you design a base or village, a lot like a small city, but you don't have to deal with the essentials of survival (food and shelter) or with ensuring the happiness of residents. Designing a sustainable base that is properly defended and laid out in ways that successfully ward off attack from the outside may be a central element of game play, however, equal in importance to conducting raids, gathering more resources (either by harvesting or looting), and making decisions about what to upgrade and how to grow and evolve the base to higher levels.

The pervasive popularity of Minecraft and the countless maps and worlds available for players to visit epitomizes the appeal of world building in the video game space—and highlights keen interest in world building among younger players and students, too. In the open-ended Minecraft game, you can play the game as an explorer of a map created by someone else, maybe a map in which survival is the key, or you can play creatively and build your own world, block by block. (After you finish designing a map, you can make it available for other players to explore.) In survival mode, you need to first build a work bench (so you can get tools) and then build a house so you have somewhere to sleep at night to protect you from the zombies, skeletons, creepers, and spiders. But in creative mode, your imagination is the limit, and using a range of available blocks (including command blocks that can be programmed to do specific things), you can build a house, a town, a city, or a full world.

If you enjoy games that encourage creative in-game design or enjoy rearranging your in-game village over and over again, either for the creative fun of it or in response to things going wrong (losing against attacks, for example), you may want to take the idea to the next level and explore city planning as a career path or experiment with city planning for fun or for your next science fair project.


Making Science Fair Connections

In the To Infinity and Beyond: Plan a City of the Future with Sim City. science project, students use Sim City to design a city for a future population of 50,000 or more people. Designing the city of your dreams may sound like a lot of fun, but students may quickly find out what lots of city officials know—it can be hard to keep everyone happy!

Using tools in the project, students test and evaluate the success of their cities and make changes to better understand how various aspects of city planning work together to create a successful city—one people want to live in!

Part of the Sim City science project involves surveying friends and family to find out what elements they really want and care about in a city. To learn more about setting up and using surveys as part of a science project, see the Designing a Survey and Sample Size: How Many Survey Participants Do I Need? resources from the Science Buddies Project Guide.


Making Connections

The To Infinity and Beyond project ties in with the annual Future City competition, so spending time with Sim City this summer and translating your ideas about a perfect city into a computer simulation may be the first step into next year's science project or a first step on the way to Future City.


Motorola Solutions Foundation, a sponsor of the Future City competition,
is a supporting sponsor of Science Buddies.




Categories:

 

As this year's Tour de France rolls into view, students can take an inside look at the science involved in successful road racing. What do gears and tires have to do with who wins the premiere race—or how long it takes to ride to the corner store? Find out with hands-on sports science projects that help tie science to the sports kids love to do and watch. This is pedal-power science that requires you to hop on a bike and put mechanical engineering in action!

2014 Tour de france map

Above: map of this year's Tour de France. For full route and stage information, see the Tour de France website.

Exercise and the Body

Exercise is an important part of a healthy lifestyle for most people, but long and strenuous endurance events like the Tour de France (spread over many days) or a marathon can be a real challenge for athletes in terms of training, health, and nutrition. Students can explore how exercise impacts the body in health and human biology projects like these:

Drink of Athletes

Before, during, and after exercise and competition, athletes often choose foods and drinks to help balance their nutrition and improve their performance.

In the Electrolyte Challenge project, students investigate the difference in electrolyte content of sports drinks and orange juice. What drink should an athlete choose to help replenish lost electrolytes? A convenient kit of specialty items for the project is available from the Science Buddies Store.

In Lactose, Sucrose, and Glucose: How Many Sugars are in Your Smoothie?, students investigate how digestive enzymes convert sucrose and lactose into glucose to better understand how different kinds of sugar in smoothies may affect blood sugar. If you need a boost of energy before a sporting event, how might you alter your smoothie recipe? What if you want your smoothie to give you sustained energy?

Last year, Christopher Froome (Team Sky) won the 2013 Tour de France after coming in second in 2012 to his teammate Bradley Wiggins. This year, Froome will defend his title, again riding as part of Team Sky.

For bicycle racing enthusiasts and fans, the Tour de France is one of the premier sporting events of the year, the pinnacle of competitive cycling for many riders. The 21-stage race runs from Saturday, July 5 to Sunday, July 27 2014. Riders in this year's 101th a challenging combination of flat, hill, and mountain stages and will ride more than 3,500 kilometers through Leeds, Harrogate, York, Sheffield, Cambridge, Ypres, Oyonnax, Risoul, and Maubourguet Pays du Val d'Adour.


Making Connections

As the race gets underway and the cyclists begin their 3-week journey, students and families can learn more about the ways in which science can help explain certain aspects of successful cycling. The following sports science projects address elements of bike mechanics, mechanical engineering, and applied physics that will come into play as riders tackle the varying terrains and altitudes of this year's Tour de France stages.

  • How Do Under-Inflated Tires Affect the Difficulty of Riding a Bike?: During a race like the Tour de France, riders may ride with varying tire pressure (psi) amounts based on the stage of the ride and the weather conditions. In this sports science project, students explore how tire pressure relates to the way a bike rides. What does how full a tire is have to do with air resistance of the bike wheel as it rolls over the ground? Attach a spring scale to a bike, grab a tire pump, and find out. This project requires one person on the bike and one to pull it along, so grab a friend or sibling to sit on the bike!
  • Jack and Jill Went Up a Hill and Came Biking Down After: Choosing the Best Gear Ratio for Speed: Learning to properly use and shift between gears on a multi-gear (or multi-speed) bike can be one of the biggest challenges of transitioning to a more advanced bike. But for race cyclists, understanding how gears relate to speed, control, and the elevation and curve of the road is a must. In this science project, students experiment with gear ratios on their bikes by riding a set path over and over using different gear ratios and recording the speed of each ride. Riders may feel the difference a gear ratio change makes during a ride, but this project guides students in gathering scientific data that correlates gear ratio and speed on the path. Bikers can try the same project steps with a different path, one with a slight hill, for example, for even greater understanding of gears.

Learning more about the science involved in how a bike works and rides can make for interesting family discussion as the Tour de France takes place. These kinds of hands-on sports science investigations can also make your student a better rider—even just in the neighborhood!


Winning Speeds

Sports fans watching the Tour de France or other sporting events from home that involve being "fastest" to win can learn more about figuring speed in the Speed Quest project. For summer fun, students can use the basic parameters of the project to time and compare their own speeds in certain favorite sports (like bike riding) to speeds of world record holders or participants in a race like the Tour de France. How fast are you, really? (This is a great activity for encouraging students to put math skills to use this summer, too!)


Cyclists Raising Diabetes Awareness

For another look at pro cycling, see Changing Diabetes: A Pro Cycling Team with a Mission. Team Novo Nordisk is a cycling team comprised of riders who all have Type 1 Diabetes. See also, From a Boy on a Bike to a Catalyst for Diabetes Inspiration, Education, and Change, about Phil Southerland, founder of Team Novo Nordisk and author of Not Dead Yet: My Race Against Disease: From Diagnosis to Dominance.





Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Science Buddies Project Ideas that support student exploration of diabetes and other global health issues like hemophilia and nutrition are sponsored by Novo Nordisk.

Categories:

 

When you combine your circuitry know-how with fabric, you can, literally, wear your electronics on your sleeve.

Red, white, and blue monster soft circuit patch
Above: this little monster is a fun and kid-friendly electronic textile patch that lights up red, white, and blue!

There will be plenty of loud, booming, and colorful nighttime celebrations for this week's 4th of July. Even before the sun goes down, the sounds of fireworks begin, sometimes starting days in advance of the official holiday. The Discover the Flaming Colors of Fireworks family science activity is a great way to get hands-on with a science investigation that helps kids hook science to the anticipated fireworks finale, but you don't have to set something on fire to create a portable burst of celebratory color and light!

While you wait for your local Independence Day fireworks display to start, you (and your kids) can create your own red, white, and blue light-up display, one you can wear, wave, or carry. With a needle, some conductive thread, and a few electronics parts, you can sew your own lighted soft circuit to show off your national pride.

The LED Dance Glove project guides students in creating an introductory soft circuit. Also known as a wearable textile, electronic textile, or e-textile, this kind of fabric- and thread-based electronics project approaches wiring and circuitry from a new—softer—angle. Sew the components in place, being careful not to cross threads and keeping positive and negative traces separate, and you can add electronics to clothing or other fabric items.

The glove in the project can be used to create cool light effects in the dark. (See the project background information to learn more about competitions involving LED glove light shows!) Change things up a bit, and you can create your own gloves for the 4th of July using a combination of red, white, and blue LEDs or white gloves. Or, use the same general e-textiles approach and add an LED soft circuit to a backpack, a jacket, wrist band, or hat.

The LED Dance Glove project at Science Buddies features a simple circuit with an on and off switch, a coin cell battery holder, and some Lilypad LEDs. The project requires no programming (the lights are either flipped on or off), so the project is a great first step in designing and sewing wearable electronics. Sew the elements of the circuit in place, flip the switch, and wear your science with pride!

Categories:

 

What variables make a game popular with players, and do boys and girls choose different types of games? Design a survey-based science project this summer and do some statistical analysis of the data you gather. Your results might be eye opening and informative in terms of game design, the gaming industry, and what works and what doesn't depending on the audience.

Boys and girls and video games / Student science project



There are only three girls, as far as I know, in the clan in one of my current favorite games. With a staggering more than seventy-five thousand clans floating around in the game, and hundreds of thousands of players around the world, clan members come and go. A few other self-identified female players have pitstopped in our clan before moving on, but three of us have been clan members for a long time and seem to be staying—three out of a clan that typically weighs in right around the max of fifty players.

That simple statistic—3 out of 50—seems revealing. It seems to support gender stereotypes about who plays video games. But there are other variables to consider. Age and location, for example, throw a possible wrench into the picture. Our clan is global. Twenty-four hours a day there are people in our clan online from all around the world, and there are players of all ages, a strong mix, in fact, of adults, teens, and even younger players. How old might you guess the three girls are? Where do they live? Do age and location have anything to do with which games boys and girls play?

Minecraft skin

Who is the Hero?

In a game like Angry Birds, the gamer remains off screen. You pull the slingshot, but your identity is not part of the game. What matters is what happens between the birds and pigs in response to your aim and launch. In games where players appear on screen as a visible protagonist, choosing between available characters—or enabling customization of one's avatar—is a common game element. Minecraft players, for examples, create and change "skins" to control the appearance of their character (like the one shown above).

In story-based games, however, players often take on the role of a predetermined main character, a protagonist who appears in video cutscenes as well as in game play. Some story-based games offer a choice of playable characters, but many do not. Does the gender of the playable character make a difference in terms of who buys and plays a game?

Discussion and speculation surrounding previews of new Zelda, Halo, and Assasin's Creed titles suggest that the gender of playable characters is, indeed, a big deal for many gamers.

Conducting survey-based science research projects like Do Males and Females Play the Same Types of Games? and Gamers: Myth or Man? can help you better analyze today's gaming scene and make some predictions about the future of game development and design.


Survey Says

To learn more about setting up and using surveys as part of a science project, see the Designing a Survey and Sample Size: How Many Survey Participants Do I Need? resources from the Science Buddies Project Guide.

To view more science project ideas like the ones discussed here, see the Video and Computer Game section at Science Buddies.

In other games I play, the balance of male to female players appears more equal or, in some cases, maybe tilted to the "more girls" side. Who plays Words with Friends? Who plays Candy Crush? Who plays Hay Day or Farmville? Who plays Infinity Blade? Who plays Final Fantasy or Elder Scrolls? Who plays Temple Run or Subway Surfer? Who plays Minecraft or Wizard 101? Who plays Pokémon, Zelda, Uncharted, or Assasin's Creed?

Or maybe we need to step back and ask, what kinds of games are those listed above—and does that have anything to do with who plays them?


Games, Games, Everywhere

As an adult gamer, "who plays games" and "what games do they play" is an interesting social puzzle. As a parent of kids who also play video games, I find the gender dynamics fascinating. After all, kids today are kids growing up in an age saturated with video games, mobile apps, social media, and an always-on, always-connected, pervasive tech-based lifestyle and social reality.

I often ask my teen "do any of the girls you know play video games?" While most of the boys he knows do play video games, Minecraft, Terraria, and phone-based games like Clash of Clans topping the list in current popularity, his sense is that most of the girls do not. The ones that do appear to be on the fringe.

It can't be that clear cut. Or can it?

Is it really true that video gamers are still, by and large, male? Or is that stereotype outdated, wrong, and a real misreading of today's gaming scene? What does the type (or genre) of game have to do with the numbers of males and females who play? What trends can be found in different age groups, and how do those age groups compare to one another when you look at gender demographics?

These are great questions for a gamer to ask, and a clever gamer can turn questions like these into a really cool science project that does a study of human behavior, social trends, and the video gaming industry—and opens up opportunities for doing some impressive statistical analysis of the results.


Surveying the Gaming Scene

The Do Males and Females Play the Same Types of Games? science project offers a framework for designing and conducting a survey of gamers to see if girls and boys differ in the genre of games they choose.

With summer break here, you could do a social-media or text-based campaign to get friends (and their friends) involved in answering your survey. (While the project outlines a traditional paper-based survey, you might want to set up an electronic survey instead and run it through your social streams to cast a really broad net for responders. The more people who take the survey, the more data you have to help support your findings!)

Before you get started, be sure and really look at the games that are on top of the charts today. (Make sure you keep a list of your sources and the dates since top game lists change frequently.) What categories or genres of games do you want to ask about? The list of genres and example games in the project helps get you started, but you will want to spend time editing and adding to the list to make it really fit today's gaming scene. You might also want to create additional categories to study different platforms and the subcategories of games that appear on each platform. You may find that you want to ask about genres (as the project shows) but that you also want to ask about a bunch of specific games, since some games cross genre boundaries or defy easy classification.

There are lots of ways to customize and personalize a study like this, but summer is a great time to get started. You may be surprised at what you learn about gaming, gender, game genres, platforms and devices, and how people of different ages approach gaming. With a bit of data crunching down the road, you could crank out a large portion of next year's science fair project without leaving the couch this summer. (If you are thinking that far ahead, it might not hurt to drop your teacher an email first and let her know you are tackling a summer science survey that you hope to turn into your science fair project.)

We do advocate leaving the couch, but this kind of study makes it easy to combine something you love with something that can really shine a light on social trends. Not only can a project like this give you better insight into gaming and the personality and profile of gamers, but this kind of data is also critical for aspiring video game designers and developers. The more you understand people who play games, the better you can develop successful games that attract thousands and thousands of players and fans. (For a related science project that compares gamer stereotypes to real gamers, see Gamers: Myth or Man?.)

We would love to see the survey you create and hear about your experience with the project!



Note: assumptions above about the number of boys vs. girls in games the author plays are based on guessing from user names or avatar photos or based on things said during in-game conversations. Many players do use ambiguous names or adopt a different identity during game play.

Categories:

 

Nick and Tesla Explore Robotics


The science-savvy twins return in book two of the Nick and Tesla series. As their summer of intrigue and engineering continues, they find themselves in the middle of a small-town mystery and a bunch of robots. Along the way, they make their own—and you can, too!

Nick and Tesla Book 2: Robot Army Rampage

Fun with Robotics Engineering

Like many beginning robotics engineers, Nick and Tesla build their own robots using toothbrush heads. Follow along as they design their bots, try out the DIY build from the book, and continue the exploration with bristlebot projects from Science Buddies: Racing BristleBots: On Your Mark. Get Set. Go! and Build a Light-Tracking Robot Critter.

Book 2 in the Nick and Tesla series, Nick and Tesla's Robot Army Rampage: A Mystery with Hoverbots, Bristle Bots, and Other Robots You Can Build Yourself, picks up where the first book left off. Having solved the mystery surrounding the neighborhood mansion, Nick and Tesla have settled into their summer with their scientist uncle.

As Robot Army Rampage by Bob Pflugfelder and Steve Hockensmith (Quirk Books) opens, Nick is experimenting with a homemade volcano, Tesla is working on a rocket, and Uncle Newt is tweaking a compost-fueled vacuum, which (of course) explodes, creating a smelly mess that sends them all running from the house.

The action in Robot Army Rampage moves from Uncle Newt's neighborhood to the town of Half Moon Bay. Escaping the fumes from the compost explosion, the kids and Uncle Newt head for pizza and catch their first glimpse of what turns out to be a wave of robots that have quietly taken up residence in businesses on Main Street. Inspired, the kids head to the local electronics and hobby store for parts to make their own robots.

At the Wonder Hut, a few new players enter the story, including Dr. Hiroko Sakurai (a former scientist at the Jet Propulsion Laboratory), a store employee, and a joystick-controlled robot modeled after the Curiosity Mars rover. Unfortunately, the shelves for robotics parts at the Wonder Hut are, mysteriously, empty.

With no new parts, the twins challenge each other to build a robot from what they can salvage out of their uncle's lab, and the robot engineering begins. Their first bots are also the first projects in the book that readers can make themselves—Nick's Do-It-Yourself PC Leftovers Wander-Bot and Tesla's Do-It-Yourself Semi-Invisible Bottle Bot. With coat hangers, an empty soda bottle, a cast-off fan from an old computer, and some basic hardware and electronics parts, readers can build their own bots and put them to the test.

Building and battling robots takes the kids' minds off of their parents (who have been mysteriously whisked to Uzbekistan), but when Tesla's bot is crushed under a set of bike wheels, a new mystery rolls in, and the story takes off.


Mystery on Main Street

The father of one of the neighborhood kids from book one owns a comic book store on Main Street. When a valuable collectible comic is stolen, the kids decide to try and help solve the case.

As the kids play detective, robots continue to appear in town and be interwoven in the story. Early in their investigation, Nick and Tesla decide to use robotic bugs to distract their first suspect. Again, the siblings have different ideas about the design of the bugs. One wants to use LED eyes. The other wants to incorporate grape jelly to make a gooey mess. They argue, too, about the body (housing) of the bugs, debating the merits of cardboard or bottle caps. Ultimately, they compromise on toothbrush robots with mini vibrating motors (which are suddenly back in stock at the Wonder Hut).

From the Wonder Hut store clerk, the twins learn that Dr. Sakurai has been giving robots to the businesses in town to help promote the store. What follows is a comedy of errors and a series of misreads and half information as the kids try and sort things out.

As the mystery begins to unravel, the robots in town take on sinister overtones. But Nick and Tesla are up to the challenge. During a final showdown, Nick improvises exactly the right tool to save the day. Read the book to find out how (scientifically) his Super-soaker Bot Blaster takes down a robot army!


Making Connections

Readers of Robot Army Rampage will delight in Nick and Tesla's second summer adventure. As they follow along, they will pick up general robotics vocabulary, information, and inspiration. Servo motors, actuators, hydraulics, pneumatics, kinematic functions, micromotors... it's all here! As in book one, Robot Army Rampage contains guided versions of some of Nick and Tesla's inventions as DIY activities for readers, including Nick's Do-It-Yourself PC Leftovers Wander-Bot, Tesla's Do-It-Yourself Semi-Invisible Bottle Bot, Homemade Robo-Bug, Replacement Angel Hoverbot, and the Totally Improvised Super-Soaker Bot Blaster.

Readers can find similar hands-on science and engineering projects at Science Buddies that extend the fun and encourage students to try out additional approaches to building and designing robots and hovercraft! See the following science project ideas, blog posts, and family science activities for more information:

On the Nick and Tesla website, students, parents, and teachers can watch videos of projects from the book. A great educator's guide is also available for parents and teachers. The guide includes vocabulary, chapter summaries, questions for discussion, writing/research suggestions, Common Core State Standards (CCSS) notes, and more.

Don't miss our in-depth look at book 1, Nick and Tesla's High-Voltage Danger Lab: A Mystery with Electromagnets, Burglar Alarms, and Other Gadgets You Can Build Yourself and stay tuned for our review of book 3, Nick and Tesla's Secret Agent Gadget Battle! Book 4, Nick and Tesla's Super-Cyborg Gadget Glove: A Mystery with a Blinking, Beeping, Voice-Recording Gadget Glove You Can Build Yourself, is scheduled for release in October, 2014.


If you have a favorite science-themed book—for any age—let us know!

Categories:

 

Explore surface tension with a small raft and soap science experiment  / Hand-on STEM experiment

In this week's spotlight: a physics family science experiment that investigates the dynamics of surface tension. Surface tension may keep your soda from spilling over the cup when you fill it a bit too full, but can surface tension also be used to propel something? In this science activity, students build a small, lightweight raft and experiment to see how surface tension—and some dish soap—can help move it across the surface of water.


Categories:

 

Computer bugs and vulnerabilities like the Heartbleed bug provide frightening reminders of how important it is to set strong passwords online. Students can learn more about password practices and experiment with testing passwords by using and improving a password-guessing program written in Python.

Combination lock
How many possible passwords could be created from the lock above? How long would it take to crack a password on this lock? When you move to online passwords, you may have many more possible options for setting your password. How can you create passwords that are harder for a computer program to guess? Science projects at Science Buddies help students explore human behavior related to setting and remembering passwords—and let students learn more about computer science and programming by trying a password guessing program written in Python.
The Heartbleed bug detected a few months ago created a flurry of "change your password" warnings. The bug, a hole in popular opensource code that could let hackers grab chunks of server memory (including user login information) without leaving any trail, sat quietly for two years before it was discovered.

Heartbleed was a pervasive bug because many, many servers use OpenSSL, a tool used by sites, ironically, to help protect the transmission of sensitive information. Both the number of servers potentially affected by the bug and the fact that someone exploiting the bug (and stealing user information) could do so without being detected makes the bug particularly frightening.

Not every site and company was impacted by the Heartbleed bug, but many were. (According to some estimates, as much as 66% of the Internet was impacted by the Heartbleed security flaw.) Thankfully, news of the bug and checklists for sites for which users definitely needed to change their logins, traveled fast. Heartbleed was big news in both public and private circles. You may have even shared, retweeted, emailed, or texted warnings or public service announcements about Heartbleed to your own friends and family.

News of the Heartbleed bug immediately caused password and online security and privacy panic. While coders and server owners raced to patch the bug, users faced up to the fact that changing passwords was necessary. According to a recent Wired article, "Heartbleed triggered what was probably the single largest mass-password change in history: In response to the bug, some 86 million internet users in the U.S. alone changed at least one password or deleted an internet account."

After reviewing several charts of online sites that were affected by the Heartbleed bug, including many social media sites, I realized I didn't have a choice. To ignore the risk of the Heartbleed bug would be to bury my head in the sand. I needed to change passwords at least on some of the major sites I access frequently, sites that are part of my daily routine.

You may know that a simple password like "apple" is not a good idea. Neither is the name of your pet or your birth date. But what is a good password? How complicated does a password need to be to be safe from hackers? Is any password really unbreakable?

Taking a look at how passwords can be guessed can help answer that question. By experimenting with a password guessing program, students may better understand strategies to take to make sure passwords are as strong as possible.


Personal Password Protocol

Once upon a time, I used a single password for all of my logins. Gradually, a bit of paranoia crept into my approach as stories of identify theft began to rise and as the number of places requiring a login increased. Did I really want the same password at x gaming or shopping site as I use to access my bank? If someone hacks my email or my iTunes, to how many other accounts might they also gain access?

Along the way, I changed how I create my passwords, how many I use, and how I structure them.

Then there was Heartbleed.

Dealing with the Heartbleed bug was definitely not fun. Many of us have dozens and dozens of logins, possibly involving dozens and dozens of passwords. All those passwords add up!

In response to Heartbleed, I changed a handful of passwords in one afternoon. I jotted down a few of the changes on a slip of paper. (This probably wasn't the smartest choice.) I promptly lost the paper in moving between rooms and between computers. (More than a month later, I still have not caught sight again of that scrap of paper.)

When I next tried to use Facebook... bam. Trouble. I tried dozens of combinations and tweaks on my old password. Dozens of failed attempts. Lots of wasted time. I finally got in, and then repeated, amazingly, the same difficulty when I was prompted to log in again on another computer. And then again on my phone.

When I tried to log into one of several email accounts, my Instagram account, my Pinterest, I ran into password trouble at every turn. Because so many of my passwords differ, I repeatedly found myself at a loss trying to get logged back in, a process I had to repeat on every device I use.

Unfortunately, while I had trouble cracking my own passwords, even though I know the general parameters of how I set them and how I had tried to systematically change them, a hacker probably would not have nearly as much trouble breaking my passwords or yours.


Real-world Online Security

Password security is always something about which you want to be cautious, mindful, and protective.

In the movies, you often see people—on the well-intended side as well as on the criminal side—trying to figure out a password based on somewhat obvious details or identifying information about the person (like a child's name, a birth date, or a favorite rock band).

Off the big screen, guessing someone's password is not usually that easy. Most people are savvy enough about online security to use something less than obvious, to throw in some mix of capitalization, and to intermix numbers, letters, and symbols.

Guessing a friend or family member's password might be harder than you think, or even impossible—for you. But for someone applying technology to the process of stealing passwords, you might be surprised at how quickly a password can be broken by a bit of computer code.

A program isn't trying to "guess" the password the same way you might. Instead, a computer program may be coded to run systematically through all possible combinations to try and break your code.


Making Student Science Connections

Two science projects at Science Buddies tackle password security and guide students in an investigation of computer security behaviors and technologies.

  • Do People Use Different Passwords for Different Accounts? is a human behavior project in which students investigate password practices among groups of users. In this project, students survey people to better understand how different users think about, use, and create passwords for online sites and services. Do they use the same password everywhere? How many passwords do they have? What kinds of trends can be identified among users regarding password practices? (For more information about conducting survey-based science projects, see the Designing a Survey and Sample Size: How Many Survey Participants Do I Need? resources from the Science Buddies Project Guide. Don't overlook the ways in which your online connections and social media can be used to help broaden your survey pool!)

  • Password Security: How Easily Can Your Password Be Hacked? is a computer science project in which students take an inside look at how difficult (or not difficult) figuring out a password can be. By first thinking about a standard combination lock and doing the math to determine the number of combinations (and how much time it might take to test each one) and then moving on to thinking through the same process for more difficult kinds of locks, students look from the ground up at password construction and password cracking.

    Using an introductory exercise in reading and writing Python code, the project guides students in an exploration of how computer routines can try and guess passwords. You can't use this code to steal someone's information from somewhere else, but you can have fun experimenting with guessing a password a friend inputs in the program code or testing the code to guess your own strings and compare the time it takes the program to guess different kinds of passwords. What makes it harder for the program to guess a password? What kind of password takes longest? Can this simple program crack the passwords you normally use? Can you come up with a password the program can't guess? You can also test the password guessing code to see if you can figure out a few sample passwords from Science Buddies.

Note: the project above is not designed to encourage students to try and write code that might steal user information. Instead, the project gives students a better understanding of how passwords can be systematically tested and guessed by software (even if millions of possible combinations have to be checked). The project also gives students a fun, real-world scenario in which to experiment with Python computer programming. Learning to run, edit, and revise the provided code involves installing Python, learning to interpret the code, and familiarizing oneself with the syntax specific to Python, which is important for students who may already have experience with other coding languages.


Memorizing Passwords

Keeping track of multiple passwords can be complicated, and as the number of passwords you use increases, so does the challenge of remembering them all! One strategy people often talk about in setting a password is to use the first letter of each word in a title or phrase. This kind of password is called a passphrase.

When using a passphrase password, you are using a memorable (you hope) sentence as a way to help you remember your password. People use similar approaches to help remember other strings of information. Mnemonic devices help people remember information by attaching the information to something more easily remembered. A silly sentence made from the first letters of the names of the planets, for example, may make it easier to remember the order of the planets than just trying to memorize the planet names in order.

The Memory Mnemonics science project guides students in an exploration of mnemonic devices and how they may help improve someone's ability to remember information. For a simplified family science activity version of this project, see Memory Science.


Protect Yourself Online

For additional information regarding best practices for online safety and privacy, see the Internet Safety Guide.



Support for resources and Project Ideas related to cybersecurity is provided by Northrop Grumman.

Support for Computer Science Project Ideas and Internet Safety information at Science Buddies is provided by Symantec Corporation.

Categories:

 

3D printing has opened a cool new frontier of custom manufacturing that brings freedom to individuals interested in design, invention, or just in need of a rare or unusual part. With a hands-on modeling and design project using Autodesk 123D Make, students can design and assemble a layered 3D model for a better understanding of how 3D printing and additive manufacturing works.

3D printing is all the buzz. From replacement parts for household objects or toys that are broken to one-of-a-kind creations to a large-scale approach to manufacturing that may revolutionize the way products are made, 3D printing has changed how people think about "making" things that once required industrial machines and molds. In addition to giving individual inventors and designers new options for testing out ideas, 3D printing brings new possibility to many big industries, from automotive to healthcare. 3D printing is a game changer, and industry and DIY and maker communities alike are excited by what 3D print technologies enable, but the printer in your school computer lab or home office probably still prints out the same flat images and text as it always did.

What is 3D printing all about? What does it really mean for a printer to "print" a ready-made, fully-functional object, on demand, similar to the way you might request an item from a vending machine?


One-of-a-kind Designs

You may have read stories about "printed" objects ranging from artificial organs to cell phone accessories and other tchotchkes, things that someone wants to make but doesn't need a million of or even a hundred. Or maybe what you need is a specific little piece to replace something that is broken, a piece that is hard to find or no longer made. With 3D printing, you can make just one of any item you can imagine—as long as you can create a digital 3D model. There are no expensive molds and machines that have to be made, customized, or altered to handle each design or each change. Instead, using a digital design file as a blueprint, a 3D printer prints out the object, layer by layer.

With 3D printing, the z axis comes into play as the printer adds "depth" to the print. In order to create a file for 3D printing, designers use computer-aided software to create a 3D model of an object that can then be printed with a special 3D printer. Depending on the printer, 3D printed objects can be made from a variety of materials, including rubber, plastics, paper, and even metals. Using the digital blueprint, the printer (loaded with the chosen material) extrudes the material layer upon layer, similar to the way that a regular printer deposits ink as the printer head moves back and forth across the page—only dimensionally instead of just in flat, horizontal rows.


Creating Paper Models

The layer by layer approach central to 3D printing is an example of additive manufacturing. In traditional manufacturing, an object might be created by taking a block of material and removing (or subtracting) material to get to the desired shape. Sculpting something out of a block of soap or a block of wood, for example, involves a subtractive approach—you whittle away what you don't need to leave only the desired shape behind. With additive manufacturing, layers of material are added, one by one, to build the object to the desired shape and size. Only what is needed is used, so there is less waste.

That virtually any object imaginable, including artificial organs, can be constructed by printing "layers," may seem hard to believe. A novel software application from Autodesk helps remove the mystery of additive construction by giving users a hands-on way to create their own additive models.

Autodesk's 123D Make auto-converts 3D digital objects into 2D vector-cut patterns or templates. Using 123D Make, students can print out the individual layers needed to construct a 3D model (designed in another program) and then glue or tape the layers together to manually build the 3D object. Using paper (or cardboard) to construct a 3D object from layers lets students see, from the ground up, how a 3D printer creates a 3D object from layers. It's a great creative exercise, but using 123D Make is also a great way to take a hands-on, nuts-and-bolts look at how an object can be built from layers—and how computer-aided design and modeling is related to what a 3D printer will "do" when printing out the dimensional object.


Making a 3D Model

Using 123D Make, students can explore fundamental principles of 3D additive design by making their own 3D object from layers. Opening up one of the many gallery examples is a great way to get started. Choose a model like a "skull," "rocket," or "rhino," and you can immediately see how layers are used to create the item. With 123D Make, students can change the size of the item, change the direction of the "slices" (which plane is used for slicing?), and even view the same object as it could be assembled using various techniques, including stacking (layering) and paper folding.

Once a design has been finalized, it can be laser-cut (professionally) or, for an at-home look at the process, the design can be printed out on multiple sheets that contain all of the slices necessary to make the object, layer by layer. Trace and cut the shapes from cardboard, grab some glue, and you have the makings of a fascinating creative engineering activity. (Some versions of the 123D Make application animate the assembly steps, layer by layer, as shown in the screenshot below. All layers are numbered for DIY assembly.)

Screenshot from 123D Make Screenshot from 123D Make Screenshot from 123D Make
Above: Using 123D Make, students can see and print all of the layers needed to construct the 3D object.

123D Make is available as an iOS or Android app, a standalone software product, and a web application.


Next Steps

After experimenting with a cardboard-based, glue-it-together 3D model, students can continue to explore 3D modeling and 3D printing using one of a range of Autodesk tools. The Autodesk 123D site connects students with a number of free apps and tools, resources, and samples to help jump start exploration of 3D and computer-aided design.

autocad-apps.png
Above: Autodesk offers a full suite of 3D modeling and 3D printing tools.


Premier Design Tools for Educational Use

Autodesk gives students, educators, and educational institutions free access to professional design software, creativity apps, and real-world projects. For more information, details about education use, and to download software, visit the Autodesk Education Community.


What Will You Make?

If you are already a user of Autodesk software, we would love to hear from you! If you try 123D Make, or any other tool on the 123D site, please let us know. We would love to see what you build, design, explore, or even print!




Science Buddies' resources for students, teachers, and parents remain free thanks to support from sponsors like Autodesk.

Categories:

 

Compare finger prints within families and fingerprint science  / Hand-on STEM experiment

In this week's spotlight: a genetics and genomics family science experiment for Father's Day. Fingerprints are unique, but do family members share fingerprint characteristics? Are there patterns of inheritance that come into play when it comes to fingerprints? Put the question to the test with a visual examination of fingerprints among siblings and between different family members!



Categories:

 

From physics to statistics, science plays a big role in soccer. As the World Cup unfolds this summer, watch the games, cheer on your favorite teams, and see science in action!

Sports fans all over the world are gearing up for FIFA World Cup soccer, which begins on June 13 in Brazil. Over the course of a month, soccer devotees will celebrate victories and groan over defeats as teams from 32 nations play 64 matches in 12 different stadiums, culminating in the final game on July 13.

To make it into that final match, elite soccer players will leave everything on the field, giving their fans the chance to see awesome punts, exciting goals, and split-second reaction times. How can these players score from impossible angles? How do goalies block shots? Practice makes perfect, but scientific principles have something to do with it, too.


Making Connections

The following Science Buddies Project Ideas help students uncover and explore the science in soccer:

  • The Science of Spin: How Does Spin Affect the Trajectory of a Kicked Soccer Ball?: To "Bend It Like Beckham," you need to put the right amount of spin on the ball. Experiment with kicking different points of the ball to see how the flight path changes.
  • Under Pressure: Bouncing Ball Dynamics: What would soccer be without a bouncy ball? Does it matter how much the ball is inflated? In this quick and easy experiment, investigate the concept of air pressure.
  • How Far Can You Throw (or Kick) a Ball?: Grab some friends, head out to a field, and have fun going for the longest punt! Explore how the trajectory of the ball affects the distance that the ball travels.
  • Think Fast!: Lightning-fast reaction times are a must for top goalies. Try this project and discover how fast your reflexes are!
  • Geometry of Goal-Scoring: Ready to score one for the team? Test your accuracy when kicking from different angles to the goal, and then use your math and graphing skills to explain your success rate.

Science and Sports Go Hand-in-Hand

Sports science makes it easy to bring up scientific concepts in everyday life. Whether they are throwing, running, swimming, or kicking, asking the right questions can help kids see that science that isn't just for classrooms. Visit the Science Buddies Sports Science topic area to find more winning ideas!




Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Time Warner Cable

Categories:

 

Make and explore the geodesic dome with one made from gumdrops and toothpicks science experiment  / Hand-on STEM experiment

In this week's spotlight: a civil engineering family science experiment that guides students in building a simple geodesic dome from candies and toothpicks (or tubes made from newspaper) and then exploring the shape. How strong is a geodesic dome? How much weight can it hold? Where in nature and architecture can you find examples of dome shapes?


Categories:

 

Chemistry titration project (and science kit) to investigate and compare quantities of Vitamin C in juice.


To investigate the science question above regarding quantities of Vitamin C in different kinds of juices or drinks, see the following resources and projects:

For other Science Buddies Project Ideas involving titration, see:



(Note: The projects above can be done using the Orange Juice titration kit from the Science Buddies Store.)

Categories:

 

For this year's Pritzker Prize winner, cardboard and paper have proven to be key materials in designing disaster relief housing. Examples of Shigeru Ban's work force a reconsideration of design, materials science, and civil engineering. Can using recyclable materials make a cost-effective and sustainable difference in the way architecture is approached? With cardboard tubes, paper, straws, and other everyday materials, students can experiment with principles on a small scale that the award-winning architect uses in humanitarian structures around the world.

2014-blog-architecture-Shigeru-Ban-school3.jpg
Paper Nursery School, Ya'an City, Sichuan, China, 2014. Photo by Shigeru Ban Architects.

2014-blog-architecture-Shigeru-Ban-school-2.png
Paper Nursery School, Ya'an City, Sichuan, China, 2014. Photo by Shigeru Ban Architects.

Architecture is a science and an art form, a field in which form and function meet at a point where materials are turned into buildings and structures that may be used for business, housing, or social gathering. Throughout history, there have been chains of evolution in architectural style and tradition, approaches to design that often mirror trends in society. But when you think about architecture today, you probably think about big buildings, skyscrapers, and towers that create skylines in some of the world's most well-known cities. You may also think of unusual examples of architecture, like the circular Guggenheim Museum in New York, Lloyds Building in London (often called the "Inside-Out Building"), Sydney Opera House in Australia (a series of interlocking shells), or a Frank Lloyd Wright building like Fallingwater, which appears to grow out of a hillside and sits atop a waterfall.


Unique examples of architecture may make headlines, and city skylines make postcards, but even when it comes to everyday construction—ordinary houses—buildings usually involve strong materials, materials designed for permanence. These materials are often costly, and construction may be time consuming.

But what exactly is a strong material? If a typhoon blows through, will the structure withstand the force? What happens to a "strong" material during an earthquake? If the material doesn't hold up, what options are there for fast, inexpensive solutions for residents displaced by disaster?

Paper Log House, Cebu, Philippines
Paper Log House, Cebu, Philippines. Photo by Shigeru Ban Architects.


Strong as Paper?

Out of what materials is your own house built? Depending on where you live and what unique properties architects and civil engineers have to take into account in your area (like the risk of earthquake, climate, or the composition of the ground), your house might have a framework of wood, steel, or concrete. The structure and walls of your house are likely made from materials expected to stand up to environmental factors over time.

What about a house made out of cardboard?

The idea may sound surprising, but for Japanese architect Shigeru Ban cardboard is not only a viable building material but a material he has used in dozens of buildings designed to provide relief housing for victims of natural disaster.

Ban was recently awarded the 2014 Pritzker Prize, one of the most prestigious prizes given each year in architecture. Ban has a history in commercial architecture, but in recent years, he has donated his skills to helping design and build structures in disaster zones. Most notable about his volunteer work on behalf of disaster victims is that his buildings are made primarily using recyclable materials.

Cardboard may seem incongruous to building in an area where natural forces have destroyed permanent housing, but Ban has shown, around the world, that materials like shipping containers and paper can be used to create fast, low-cost temporary housing and social structures that are sound, protective, and can be erected quickly.

2014-blog-architecture-Shigeru-Ban-paper-log-house-turkey.png
Paper Log House, 2000, Turkey. Photo by Shigeru Ban Architects.


A Paper-based Approach

It is hard not to be awed and inspired by images of Ban's designs (like the ones shown above). Repeatedly, his work shows ingenuity in design and materials that tackles a problem (the need for a certain structure) with a simple, recyclable solution.
After the 2008 Sichuan Earthquake, Ban designed temporary classrooms, a "paper nursery school," that volunteers were able to quickly build from cardboard tubes. In Rwanda, in 1999, he designed paper refugee shelters. In Italy, after the 2009 L'Aquila earthquake, Ban designed a concert hall from a combination of materials, including cardboard, a social structure designed to pay tribute to the musical heritage of L'Aquila and to rekindle the spirit of residents. In both Turkey and Japan, Ban designed paper log housing. Ban's Japanese Pavilion (built for an Expo, not in the wake of disaster), was created from paper tubes. The structure took three weeks to build from thousands of paper tubes and spanned more than 236 feet across and 50 feet high.

In some cases, Ban's structures are designed to be able to be taken down and rebuilt, as needed. In other cases, Ban's designs become a lasting part of the community. The Cardboard Cathedral he designed after the 2011 earthquake in Christchurch, New Zealand, for example, was initially envisioned as a temporary replacement structure, but before construction began, plans changed. The beautiful cardboard, steel, and glass A-frame church is immediately recognizable as a place of worship, despite the fact that the roof is constructed from cardboard tubes.


2014-blog-architecture-Shigeru-Ban-school3.jpg
Cardboard Cathedral, 2013, Christchurch, New Zealand. Photo by Stephen Goodenough.



Unexpected Materials

So, why paper? And "how" paper?

In an interview with CNN after the Pritzker Prize was announced, reporter William Lee Adams asked Ban about his use of paper. "The strength and durability of a building has nothing to do with the material," Ban told Adams. "Even a building built in concrete can be destroyed very easily. There can be a permanent building made out of cardboard tubes."

Paper Emergency Shelter for Haiti, 2010, Port-au-Prince, Haiti
Paper Emergency Shelter for Haiti, 2010, Port-au-Prince, Haiti. Photo by Shigeru Ban Architects.


Beyond Card Houses

Students intrigued by Ban's work, by architecture, or by the ways in which Ban's design approach contributes to disaster relief solutions around the world can explore design and engineering concepts in civil engineering and materials science project ideas like these:


Paper Temporary Studio, 2004, Paris, France. Photo by Didier Boy dela Tour
Paper Temporary Studio, 2004, Paris, France. Photo by Didier Boy dela Tour.


To see more examples of Ban's architecture, visit: http://www.shigerubanarchitects.com/works.html

Categories:

 

A Super Science-filled Summer Break


Ready or not... into the summer break we go. With school (almost) out for the summer, take stock of some great science activities and challenges that are perfect to help keep kids engaged and actively learning during the break. Science may be even more fun when it is "just for fun"!

2014 Science Buddies Summer Science GuideThe long summer break can feel bittersweet for parents who worry about their students whiling away countless hours on the couch or in front of a screen and losing academic ground. Beyond the buzz of vacations and camps, and after the novelty of sleeping in and staying up late wears off, the summer sprawl can even begin to feel, at some point, a bit amorphous for students. There are a lot of hours to fill!

Luckily, there are loads of engaging science and engineering activities that can be done at home for fun or as independent summer projects and can tie in with other summer pastimes and hobbies.


Great Science on the Schedule

Every year, we pull together suggestions for summer science activities and experiments. Our roundup lists from the last two years contain many wonderful suggestions for projects kids can do during the summer and ways parents can inject a bit of science into summer planning.

This year, we will be unveiling a new area of Science Buddies in June that will be a great resource for family summer science—and family science all year long! But there are lots of projects at Science Buddies that students can enjoy even when they don't need to do a "science fair project" or complete a science project assignment.

As you look ahead to summer, remember, doing science doesn't have to be for school! You and your kids can earn an A++ this summer by exploring science and engineering at home.

Here are some of our picks for this summer:

2014 Summer Science Guide: Art Bot Robotics Science Project 2014 Summer Science Guide: Rainbow Fire Science Project 2014 Summer Science Guide:  Putty Polymer Science Project

2014 Summer Science Guide: Soft Robot Gripper Science Project 2014 Summer Science Guide: Paper Dolls Science Project 2014 Summer Science Guide: Electromagnet Science Project

2014 Summer Science Guide: Grape Soda Chromatography 2014 Summer Science Guide: Bird Feet Science Project 2014 Summer Science Guide: Rock Candy Crystal Science Project

2014 Summer Science Guide: Cabbage Grow Science Project 2014 Summer Science Guide: Water Float on Water Science Project 2014 Summer Science Guide: Ant Barrier Science Project

2014 Summer Science Guide: Hydroponics Science Project 2014 Summer Science Guide:  Electrolytes Science Project 2014 Summer Science Guide: Hummingbird Science Project

2014 Summer Science Guide: Ice Cream Science Project 2014 Summer Science Guide: Bristlebot Toothbrush Robots Science Project 2014 Summer Science Guide:  Carbonated Soda Science Project

2014 Summer Science Guide: Bubble Science Project 2014 Summer Science Guide: Biosphere Science Project 2014 Summer Science Guide: Milk Carton Boats Science Project


More Great Choices for Science at Home

Don't miss these other roundup lists of great "what to do over the break" science, technology, engineering, and math projects as well:

Categories:

 

Use a pinwheel to explore wind turbine power and energy science experiment  / Hand-on STEM experiment

In this week's spotlight: an energy-focused family science experiment that explores the relationship between the potential power of a wind turbine and the source and location of the wind. Using a pinwheel, students create their own horizontal-axis wind turbine and experiment to see how the pinwheel spins when the wind comes at it from different directions—and how this translates into how much weight the wind turbine can lift. A pinwheel is a simple example of a wind turbine, but with this hands-on experiment, students can see the affect of the wind direction in how many small items the pinwheel can lift.


Categories:

 

Joints give paper dolls added life and let little fingers manipulate characters as they play out their roles in an imaginative storyline. But joints also add potential hot spots for damage. A plastic toy figurine may lose its arm, head, or hair, but the life of a paper doll may be even more short-lived! A new hands-on science activity helps kids experiment with paper dolls by putting the durability of certain design and materials choices to the test. Once the best approach is scientifically determined, kids can make and decorate a paper doll with greater understanding of how the materials affect how well the doll will last.

Paper Doll Lisa from paper dolls materials science project Paper Doll Vincent from paper dolls materials science project
Above: Paper Doll Lisa and Paper Doll Vincent were made by students testing the new paper dolls materials science project.
Paper may not be the most durable of materials, but kids have been playing with—and making—paper toys and creations for generations. From paper sailboats to paper pirate hats to paper planes, paper gets used in all kinds of creative ways to let kids explore design and construction, experiment with science and math principles, and occupy little hands with active and imaginative low-cost play. Paper dolls are a great example of a paper-based toy that kids make, use, and enjoy. But paper dolls are also a good reminder of the ways in which a toy made from paper may or may not last well, stand up to repeated use, or survive rough play.


Choose Your Own Character

Paper dolls are a low-tech, inexpensive, and open-ended activity at home. With a bit of paper, some coloring tools, and imagination, kids can turn any character into a paper doll. You can find examples, templates, and inspiration online for all kinds of exciting paper dolls, from ninjas, robots, and fairies to dragons, pirates, and mermaids. The possibilities are endless, but not all paper dolls are constructed the same and, as the saying goes, not all paper dolls are made equal.


Choose Your Materials and Design

Some paper dolls are made from single pieces of paper. These dolls sometimes are designed to fit into a stand, and kids make costumes and wardrobes that can be attached using tabs, tape, buttons, or bits of Velcro. Other paper dolls kick construction up a notch and are articulated or jointed. These dolls may only have one set of clothing, but they contain moving parts like arms and legs. The number of moving parts may vary. You can certainly find paper doll creations with numerous jointed parts, but you can also make a basic articulated paper doll that only has movable arms and legs.

Articulated paper dolls offer more flexibility for positioning the doll during storytelling or play, but having multiple moving parts also makes the dolls subject to different kinds of wear and tear.

Paper doll materials science project template for articulated paper doll
Above: What method of attaching the arms to the paper doll body results in the most durable paper doll? Students put it to the test in a new science project at Science Buddies!


Testing Paper Doll Construction

In a new materials science project at Science Buddies, students (and families) can turn paper doll-making into a hands-on science project. There are a number of ways that the joints of an articulated paper doll may be assembled. Do the various approaches to constructing a paper doll affect how well the doll will last? How much wear and tear can the joints take? In addition to articulation, there are a number of other design options that may make a difference in how well a doll lasts or how durable it is.

The Get Crafty—Create Your Own Durable Paper Doll project focuses on the issue of articulated joints and explores two design options, the weight of the paper you use for the doll and what you use to attach the arms. The project guides students in doing a quantitative test of the various combinations to see which is strongest (or which can support the most weight before an arm is ripped off the doll). This quantitative approach helps students see the value in doing an assessment that can be measured rather than just doing a subjective assessment. After doing a scientific experiment with dolls made from two kinds of paper and with joints attached using two different methods, students will be able to see from their data which approach was most durable.


Making Connections

A hands-on project like this can be used to talk with kids about design, engineering, materials science, and the value of scientific product design and construction testing. Even when it comes to toys, science can be used to explore what works and what doesn't work and to come up with solutions and improvements that will lead to longer-lasting toys—and happier kids!

Categories:

 

Assembling a simple wooden train and track with cleverly placed magnetic strips lets kids experiment with a train that levitates off the track and zips effortlessly from one end to the other when pushed. What happens when you add a bit of weight? Put the science question to the test in this fun hands-on science activity and experiment.

maglev train experiment family science project

maglev train experiment family science project

The allure of a magic trick is something pretty cool to most kids. The quarter pulled from behind the ear. It's a classic sleight of hand passed down by generations. The finger that appears to be separated into two parts at the knuckle, able to be slid side to side. (That one has been used to gross out and entertain plenty of kids.) Card tricks. Bunnies from hats. People that vanish from a cube. Magic appeals to us on some level where suspension of disbelief wars with our intellect, our logic, and our puzzle-solving skills. Part of enjoying a trick may, in fact, be trying to figure out how it was done, how it is possible, what really accounts for what we saw, and how to do it ourselves!

That science is full of everyday things that seem magical is a cool twist on sleight of hand and illusion. The more you understand science, the more you can explain what is going on in a process that seems "magical."

In the Harry Potter books, the train that transported the kids to and from school each year involved walking right through a wall to reach the 9 3/4 platform at King's Cross Station. That's a special kind of magic—the fantasy kind. Science can't explain it. The train on the other side of the wall, the shiny red Hogwarts Express, appears to be fairly normal, a fast-moving steam locomotive on tracks.

But there are other real-world kinds of trains that may seem to have a bit of magic to them. Maglev trains are ones that seem to hover or float above a track rather than rolling across it. Maglev trains may look similar to monorail trains, but a maglev train specifically levitates and is powered by electromagnetic forces. Plus, a maglev train doesn't have wheels!

It may look like magic, but it isn't. A maglev train is lifted by the way magnetic fields positioned a certain way repel one another. As the fields push away from each other, the train lifts off of the track and floats above the rail. Because it floats, when the train moves, there is no friction of train wheels against train tracks, so a Maglev train can go faster than a traditional train that rolls on wheels. There are still air forces (like drag) to take into account, but some maglev trains are capable of speeds greater than 300 mph.


Bringing the Magic Home

Studying magnets and magnetism is often exciting for elementary students. The way magnetic fields can be oriented to repel or attract one another can provide lots of entertainment value as students explore magnetism and learn more about how magnets work. You can extend magnetism discussions with a wide range of hands-on science projects and activities that can be done at home or at school. From testing the strength of an electromagnet to building a simple motor, students can explore magnetism with projects that remove the "magic" but still have plenty of "wow" factor.

For a different spin on magnetism, building a simple Maglev train is a fun way to couple a creative project with a science activity. The Magic Bullet Train kit, available in the Science Buddies Store, is a great way to get kids talking about and actively exploring magnetism and the real-world application of magnetic fields in levitating trains. Two generic magnets on a table may push away from one another, but they probably don't move far. That the same principle can be used to lift a train is pretty cool science!

Using the do-it-yourself maglev train kit, students first make their own bullet train by sanding down and painting a wooden block that will be the "train" in the experiment. How far you go with this step is up to you and your kids. It isn't easy to sand the rectangular block into something that really looks like a bullet, but spending time sanding, shaping, and then painting, decorating, and personalizing the train is part of the fun of the project! Just be sure that you don't sand the "bottom" of the train. You want to leave the bottom edge untouched.


All Aboard for Magnetic Science!

When using the Magic Bullet Train kit as a family science activity, the "building" of the train is the bulk of the activity. The small directions booklet that comes with the train kit walks you step by step through assembling the wooden rail system, adding the magnetic strips, and attaching the girders to your painted wooden train. Be careful during assembly to line things up as shown, to adhere the magnetic strips on the proper sides of the wooden rails and train, and to attach the girders as low to the bottom of the train as you can to ensure the train hovers as high as possible above the wooden rail.

Unlike a real-world maglev train, the wooden train kit relies on the standard magnetic field between the magnetic strips. There is no electromagnetism adding to the field, so don't be surprised if the train doesn't hover as high as you expect—or does not seem to hover the first time. It can take some fiddling with the placement of the girders to ensure the train hovers properly. But once you get things set up properly, a simple push of the train sends it gliding smoothly across the track. Your kids will see and feel the lack of track friction as the train glides across!

It looks like magic!

Having built the system, your young engineers will be in on the trick and able to explain how the magnetic strips work hold the train off the track. You can talk, too, about the design of the train and what holds the train "on" the track and why certain aspects of the train's design are important so that it won't fall off—design factors that help prevent accidents.

Because of the small size of the experiment and the limited number of parts (just the train and the track, once assembled), this is a great science experiment to take to school and show off. Check with your teacher first, but chances are that a small demonstration of magnetism in the form of a maglev train will be welcome and can be squeezed in during some part of the day.

Building the train is a great hands-on experiment in and of itself, but if there is a science fair assignment on hand, a student can use the train kit as the basis for a full science investigation. The The Amazing Floating Train: How Much Weight Can a Maglev Train Hold? project at Science Buddies guides students in an exploration of the relationship between weight and a maglev train's ability to levitate. It makes sense that a floating train will have maximum weight limits. But what happens when those limits are exceeded? In the The Amazing Floating Train science project, students put it to the test with their own maglev train and plastic cups filled with varying amounts of water.

You might find other ways to vary the project, too. Could you experiment with stronger magnetic strips? What would happen if you did? The "Make It Your Own" tab also contains a challenge to student engineers—install a magnetic "brake" system at the end of the track!

Categories:

 

Make bath bombs and explore the chemistry science / Hand-on STEM experiment

In this week's spotlight: a family science experiment that promises fizzy fun in the tub (or in a big bucket of hot water). Bath bombs are easy to make at home. You can mix up your own using your choice of additives with the core ingredients. But what makes a bath bomb "fizz" when it hits the water? In this science activity, students experiment with the recipe for making a bath bomb and investigate the role of corn starch and citric acid in the process. What is the chemical reaction that happens when the dried bath bomb touches the warm water? What ratio of ingredients makes the fizziest bath bomb? Mix up a few batches to find out! Once you have found your favorite formulation, you can make bath bombs to give as gifts—or just use them yourself!


Categories:

 

Sports Science project exploring basketball dribbling and energy / Hands-on science STEM experiment

In this week's spotlight: a sports science that looks at the physics of what is going on when you dribble a basketball. After you push the ball to the floor, the ball meets the floor or court and then returns, but it doesn't necessarily return to the same height. What does the surface of the floor have to do with how a ball bounces when dribbled, how much effort a player has to use to keep the ball dribbling uniformly, and what is going on with the energy of the ball in motion? Put it to the test with a fun hands-on sports science project that lets you observe and measure how balls bounce differently as a result of what's on the ground.


Categories:

 

Food Science project exploring ice cream making / Hands-on science STEM experiment

In this week's spotlight: a food science family science experiment and independent student science fair project that takes a deeper look at the chilly process of making ice cream. You can make your own ice cream using one of a variety of shaking or rolling processes, including using a baggy to hold the ingredients! How does adding salt to the ice mixture used to freeze the ingredients affect the process? Make your own ice cream to find out!


Categories:

 


DNA strawberry science experiment
Whether you explore strawberries, onions, the mighty Tyrannosaurus rex, or the ways in which certain physical traits are evident in your family, make time to talk about and experiment with DNA-related science. Students of all ages should know their A's, T's, G's, and C's. With a fun science kit from Bio-Rad Laboratories, they might even wear their own DNA around their neck!

The human genome contains more than 3 billion DNA base pairs. If you typed 360 letters a minute for eight hours a day, it would take you nearly 100 years to type all the letters. ~ Genome: Unlocking Life's Code, Educator's Guide for Teachers of Grades 7-12

That's a lot of DNA, a lot of letters, an almost incomprehensible amount of typing, and a lot of room for little mutations, changes, exceptions, similarities, and differences! This year, in celebration of National DNA Day (April 25, 2014), take time to talk with your students about DNA, genomes, and genomics.

Last year, for the 60th anniversary of the discovery of the double helix structure of DNA and the decennial marker of the completion of the Human Genome Project in 2003, we pulled together a short overview of the history of DNA, its key players, Photo 51, and great DNA-related science projects that students can do to explore DNA in Celebrating DNA and the History of the Double Helix.

A DNA history lesson or refresher is never a bad idea, but when you pair the information with a simple experiment or hands-on activity, you give your students the opportunity to see firsthand what it means to talk about DNA base pairs, how DNA differs from a genome, and how DNA is essential to all living things!



iDNAtity Audio app screen shot

Your DNA; Your Music

Your DNA may influence the kind of music you like, but with the iDNAtity Audio app for iOS, you can create a custom piece of music that represents your DNA using sound. After you fill in some information about your basic physical characteristics, like eye color, skin tone, and hair color, the app uses information about those phenotypes to determine your DNA profile.

With a bit of computing, the letters of your DNA are then converted to the notes of a musical piece, letting you "hear" your DNA. Nifty! Be prepared, your unique DNA-based sound may or may not be completely tuneful, but it will be you! Try out your custom sound with your choice of a variety of instruments, save the clip, share it, and compare your DNA music with your family and friends.

To best complete the phenotype profiling questions, you need to be familiar with certain kinds of traits, including detached (or not) ear lobes and widow's peak. An in-app glossary is provided, but the Pedigree Analysis: A Family Tree of Traits Science Buddies Project Idea contains additional information and pictures that may prove helpful.

For more information on the science behind the app, see: idnatity.com/the-science-behind-idnatity/.

In celebration of DNA Day, the iDNAtity Audio app is free for download through Friday, April 25, 2014, courtesy of Bio-Rad Education.

Genomics Field Trip

For those in the Washington D.C. area, celebrate National DNA Day with a trip to the Smithsonian Institution! The Genome: Unlocking Life's Code exhibit (opened June 2013) is a great way to help students better understand DNA, the ways in which DNA is structured, sequenced, and analyzed by scientists, and the way DNA research helps scientists better understand the past, present, and future.

A collaboration between the National Museum of Natural History (NMNH) and the National Human Genome Research Institute (NHGRI), the 4,400-square foot Genome: Unlocking Life's Code exhibit introduces visitors to the human genome and the role of genomics, the ways in which the genomes of other species show both similarities and differences, the impact of genomics on studies related to human origins, and the use of genomics in the future, particularly in health care.

Visitors to the Smithsonian exhibit can also get hands-on in the National Museum of Natural History's interactive Genome Zone. The Genome Zone houses a rotating queue of activities where students can examine their own traits, do lab experiment, make bead bracelets that show the genetic sequence of a chimpanzee or turtle, watch videos, and more.


Sampling Your DNA

In the Genome Zone, visitors may have the chance to extract a sample of their own DNA using the Genes in a BottleTM kit from Bio-Rad Laboratories. After extracting DNA from a cheek sample, students can admire it and possibly even take it home as a keepsake! Thanks to support from Bio-Rad, approximately 300 student Genome Zone visitors a day are getting up close and personal with their own genetic material—spooling their own DNA.

Thanks to the Genes in a Bottle kit and the Discovering DNA: Do Your Cheek Cells & a Strawberry Both Have DNA? Project Idea, visualizing DNA can be a simple, fun, at-home or at-school activity. At the end of the science experiment, students using the kit can preserve their DNA sample as a cool, one-of-a-kind pendant.


Support for Educators

For those not in Washington D.C. area, or for teachers and parents planning to take students to the exhibit, Genome: Unlocking Life's Code Educator's Guide for Teachers of Grades 7-12 is an excellent PDF resource. The 36-page guide contains supplemental information for a field trip to the exhibit and also offers summary information, a number of classroom activities (including printable assignment sheets), information tying Next-Generation Science Standards (NGSS) to the exhibit, a glossary, and a range of resources for science, technology, engineering, and math (STEM) education.


DNA Projects for K-12 Students

Students can also explore the world of DNA, genomes, and genomics in science projects from Science Buddies like these:



Science Buddies Project Ideas in Biotechnology Techniques are sponsored by support from Bio-Rad Laboratories and its Biotechnology Explorer program.


Categories:

 

Bunnies and chicks remind us that spring is here! No matter what sort of animals you have in your household, Science Buddies has a menagerie of Project Ideas for you to try.

2014-blog-pet-science-dog-food.png

Learning from Your Pet
Your pet may be a big part of your family, and observing and caring for your pet can be a part of your science learning, too! How do you train pets? How do you feed them to ensure their nutrition? How does the time of the day impact their behavior or sleep patterns? There are all kinds of questions you can ask and science you can explore!

Hop into any gift store this time of year, and you are likely to see a clutch of chicks or a herd of rabbits. These cute and fluffy animals have become symbols of spring and the Easter season.

I've never kept chickens or rabbits, but I do have plenty of wild rabbits hopping around my back yard at certain times of the year. They eat all of the flower buds off of my creeping phlox, but it is hard to get mad at something so darn cute.


The Zoo in Your House

According to the American Humane Society, 62% of U.S. households have a pet, so caring for an animal is a rite of passage for many kids. Do you look after a pet at home? Dogs, cats, hamsters, rabbits, and fish are popular choices for families. If you have lots of space, you may have something bigger, such as a horse or a flock of chickens.

Pets are a big responsibility, but they often reward us with love and companionship. They also can help us explore interesting science questions. Imagine caring for your pets and collecting data for your science project all at the same time. It is possible!

Take a look at these Science Buddies Project Ideas:


No Pets in the House?

If you don't have a pet, or if wild animals are where your interests lie, Science Buddies still has Project Ideas for you. Take a look at the animal-related student science projects below, or check out Science Buddies' Zoology area for more ideas.

As for my backyard rabbits, I didn't see them this winter. I am guessing that they moved on to yards with tastier foliage...or perhaps the local fox has had a feast. I guess I'll find out when my creeping phlox plants start to bud !

Categories:

 

The ping pong catapult is a great device for independent student science projects, but this is a tool you can use again and again—even as the basis for a fun afternoon or weekend family science activity. We put the rubber band catapult to use with a bag of plastic eggs for some high-flying family physics fun!

Ping Pong Catapult with Plastic Eggs experiment / family science activity

The Ping Pong Catapult has been used as the basis of a number of innovative science physics, math, and sports science projects at Science Buddies. If your student has an affinity for medieval lore, you can imagine using the device as catapults were once used—for siege—and explore the physics of trajectory through a hands-on simulation. In the Bombs Away! A Ping Pong Catapult project, students aim for a simple container target (e.g., shoe box), but for fun, you could create a castle from blocks, LEGO® bricks, or random household items or recycled containers, and either aim to knock the structure down with your ping pong ball attack or aim to launch over the structure (e.g., village walls) and into a target container (e.g., the village square or main castle). (See Under Siege! Use a Catapult to Storm Castle Walls for a project like this!)

Is your student more sports-minded than medieval? With a makeshift footfall field goal in place, you can explore kicking science, or, turn the catapult on its side and do an experiment related to baseball swings instead.

There are plenty of math and physics questions to ask and investigate using the Ping Pong Catapult (available in the Science Buddies Store). With all of these projects, keeping track of the data for every launch, hit, or kick is an important part of the exploration. Teachers and parents can easily turn the results of even informal ping pong catapult launches into a way to talk about statistics, including creating a histogram to plot results.

Before or after the school science project, however, you can use the catapult as a great indoor or outdoor science toy. My kids couldn't wait to get it out of the box and start launching balls through the house. (Be careful that they don't end up "lost" in the living room before your project or science activity starts!)


Portable, No-mess Science Setup!

Unlike some science activities, there is virtually zero setup with the catapult. Remove the pin, unfold it, replace the pin, slip a rubber band through the holes, and clamp the catapult to the edge of a table or chair. We were not planning to experiment right away, but my students were really eager to see how the catapult worked. Immediately after opening the kit, we cleared a table edge, clamped the catapult in place, and played around with the wiffle and ping pong balls and got a feel for how the catapult works, how you change the launch angle and pull-back angle separately, and how the use of the rubber bands can affect the way the object flies.

With just a bit of hands-on exploration at the dining room table, we were all set for some serious egg-flying fun. Plastic eggs, that is. (Your mileage and mess with real eggs may vary!)


You Don't Have to Have an Assignment

The great thing about family science is that you don't have to follow all the rules, do dozens of trials, or write a report at the end. You can take your family science as far and as deep as you want and tailor the activity to fit your students' interests, the time of the year, the materials on hand, or other parameters.

Easter is this week, so we decided to use the catapult with plastic eggs—much as you would experiment with the ping pong ball in the Bombs Away project. We spruced up some of the eggs we have collected over the past dozen years with zany permanent-marker faces and got ready to let the eggs fly.

We first did our launch trials indoors. Instead of using a big table, we clamped the catapult to a small wooden chair. As they quickly realized, getting the egg into the target "basket" is harder than it looks! But tweaking the angles is all part of the exploration, and with each change you make, you can immediately see what impact the change makes (if any) on the flight, trajectory, and distance. After experimenting with pullback and launch angles, they started tweaking the number of rubber bands. This resulted in eggs being hurled full force into the wall (well beyond the basket). They thought that was funny, but it prompted us to consider taking the project outdoors the next day and experimenting in a bigger space.

We packed the small chair, a basket of eggs, and the catapult in the car and headed to a neighborhood park. There were birthday parties going on in the grassy area, but the basketball court was unused. We set up our catapult (still using the wooden chair) on the court, put the basket a distance away, and let loose. The dynamics of outdoor flight were definitely different, and the breezy day made controlling the flight difficult. But it was still super fun!

Your Own Ping Pong Catapult Experiment

To experiment with the catapult for a science project or informal science activity of your own, see the following projects and ideas:


We would love to see your catapult in action! Share your photos with blog@sciencebuddies.org.


Categories:

 

Materials Sciences project to test the strength of eggshells and arches / Hands-on science STEM experiment

In this week's spotlight: a materials sciences family experiment and science fair project that asks you to rethink what you know about eggs. Are they fragile? Or are they strong? If you've ever accidentally stuck your finger through one in the kitchen, you may think you know the answer! But the shape of an egg can support a surprising amount of mass. It is a shape, in fact, that can be found in architecture. How much mass can eggshells hold? Put it to the test with a hands-on science experiment that lets you see how much mass you can stack on top of a set of eggs before they crack.


Categories:

 

Family Egg Science


Egg science comes over-easy this time of year. Whether you are boiling eggs, dyeing eggs, or both, there are easy questions you can ask with your kids to turn the activity into a hands-on science experiment that everyone will enjoy.

Egg Science / natural dyes
Egg Science / hard boiledEgg Science / soft-boiling eggsEgg Science / Strength of an Egg
Egg Science / natural dyesEgg Science / tie dye eggsEgg Science / family project

In the past few years, the process of preparing colorful, hard-boiled eggs has taken on new and very scientific significance for me as a parent. In turning the seemingly simple act of egg dyeing into a hands-on science endeavor with my kids, we have asked a variety of science questions (one at a time) and experimented with various steps in the process of boiling and dyeing.

If you will be boiling, dyeing, cracking, or hiding eggs this week with your kids at home or students at school, I hope you find science-minded inspiration and support for at-home science in the following family science posts from Easters past:

This year, I am not planning to run kid experiments with dyeing or boiling. Instead, we got hands-on, ahead of time, with a bag of plastic eggs and the ping pong catapult. Stay tuned for a photo recap of some serious egghead-launching fun!


Don't Miss This Egg Success Story

This story of a fourth grader's science project and his experience using silk ties to dye eggs is a great science project success story to share with your students. You can talk with them about pH and even try tie dyeing eggs as a group or home science activity!

Categories:

 

Ocean sciences density and salt water project to make an egg float / Hands-on science STEM experiment

In this week's spotlight: an ocean sciences family experiment and science fair project. Some things float in water and some do not. Knowing the density of the object and the density of the water helps explain what is going on, and you can observe and talk about the buoyancy of an object. But adding salt can change what happens. Why? In this hands-on science experiment, you set up a series of dilutions to see at what point an egg goes from sinking to floating in salt water.


Categories:

 

There was no singular moment of Big Data Bang, but we are living in and heading towards a time of seemingly endless and exponential data explosion—and the race to create solutions and strategies to help tame, store, organize, and make sense of big data is on. But even before there was a moniker, there were large data sets being created and used in fields like the life sciences. Today, those data sets continue to grow and evolve. Working with publicly-available big data sets offers students a chance to get in on the forefront of the big data movement and start tackling big data questions and helping create big data solutions.

Circos data visualization / big data sample

What Big Data Looks Like
Many researchers and developers are working on tools that offer ways to visualize big data. When data is interpreted visually, the results are often beautiful, colorful renderings that underscore the richness of available data. These visualization tools may help researchers spot trends, connections, similarities, and patterns. The image shown above is from an opensource circular data visualization tool called Circos.

The phrase "big data" has made a correspondingly big splash in circles ranging from business to sports to school admissions boards. A few years ago, talk was about data mining. Today, no matter where you turn, you may run into discussions about big data.

With increasing amounts of data available and coming in from a variety of input points and multiplying over time, figuring out ways to best manage, organize, and manipulate data so that it can be analyzed to extract meaningful and useful information is a challenge that developers and researchers are racing to solve.


A Problem of Scale

The term big data highlights the fact that today's data is already vast, and it is ever-climbing upwards in size. The growth of data doesn't necessarily have an end point. Discussions of big data often talk about data sets that are in the terabytes, petabytes, or exabytes (a quintillion bytes). These are data sets that are too large to manage with ordinary tools, traditional spreadsheets, and manual number crunching, and the data sets are growing by the nanosecond.

Dealing with big data is sometimes labeled a "business" or "tech" problem, a reality for businesses that need, for example, to better understand their customers in order to best serve (and keep) them as loyal, satisfied, customers. Interpreting and acting upon gathered data can shine a light on problems, successes, and trends which may help a company make changes and decisions about future offerings, services, and products. The problem is that the data is, in many cases, so large that companies are struggling to figure out how to best use and analyze it.

Big Data is a business challenge—but it is bigger than that.


Bio Big Data

Science is no stranger to large data sets. Science, in fact, has been creating, gathering, and analyzing "large" data for years. What has changed and continues to change is that the amount of data continues to increase, and the tools available for extracting information from that data (or for processing the data) continue to evolve.

You can find examples of big data sets in many fields of science, including astronomy and meteorology, but for researchers in genetics, genomics, and biotechnology, dealing with big data is an important part of day-to-day projects. Luckily, there publicly available tools exist that allow researchers (including students) to plug in query information and extract results from big data sets. These tools make the data accessible. As the data continues to grow, scientists continue to develop new tools and projects that aim to better understand the data and that seek to find new answers and new approaches to analyzing big data.


The Human Genome Project

In the Life Sciences, the importance of big data and collective work toward central repositories of information can be seen in the Human Genome Project (HPG). A draft sequence was first published in 2000, and the completed sequence was released in 2003. According to the National Human Genome Research Institute, the completed HGP "gave us the ability, for the first time, to read nature's complete genetic blueprint for building a human being."

The HGP was groundbreaking for life sciences, but more than a decade later, the data is still being mined and combined with additional data to draw new results and conclusions. The "What's Next? Turning Genomics Vision Into Reality" page on the NHGRI site describes several projects that build upon the HPG. For example, the ENCyclopedia Of DNA Elements (ENCODE) project seeks to use HPG data to identify "all of the protein-coding genes, non-protein-coding genes and other sequence-based, functional elements contained in the human DNA sequence."

Though life sciences scientists are increasingly immersed in big data, the future will hold much more big data, data of (literally) mind-boggling proportions. For example, both the Brain Research through Advancing Innovative NeurotechnologiesSM (BRAIN) Initiative and the Human Brain Project are bioinformatics-driven big data projects focused on mapping the brain, an organ which has an estimated 86 billion neurons, each of which makes multiple connections.

With the creation of data sets like these underway, now is a great time for students to start digging into how to work with data sets, learning how to use existing tools, and gaining an understanding of the problems, issues, and possibilities of working with bioinformatics tools and big data.


Making Connections

Students interested in life sciences, genetics, genomics, or the challenges of Big Data can get in on the action with bioinformatics science projects like these:


Talking Big Data with Students at the USASEF X-STEM

On April 24, the X-STEM Extreme Stem Symposium, sponsored by Northrop Grumman Foundation and MedImmune, will take place as part of this year's USA Science & Engineering Festival (USASEF) in Washington D.C. With dozens of speakers presenting on science, technology, engineering, and math (STEM) careers, X-STEM promises to be an "extreme" and exciting science career-themed symposium for students.

At X-STEM, Melissa Rhoads, a biotechnology strategist at Lockheed Martin, will be talking to students about the "big" challenges and "big" opportunities of big data—and related career paths.

As a preview of her X-STEM talk, Science Buddies talked with Melissa about big data in general and, more specifically, in the life sciences. Her answers highlight the ways in which students are already immersed in big data and how the sciences will be more and more reliant on big data strategies in the future.

Science Buddies: The availability of public data sets in life sciences makes it possible for students to tackle exciting bioinformatics projects related to genetics, genomics, and biotechnology. How do you think tools like BLAST or the National Center for Biotechnology Information (NCBI) Gene database have helped open things up for researchers, including students?


Melissa: Public data sets of life sciences are incredible resources for students and researchers alike. I liken these data sets to the open source software (OSS) that has been available for decades. OSS 'democratized' software development, providing the opportunity for students and small companies to develop code for personal use or sale. In recent years, for example, app development for smartphones has allowed students and professionals to develop capabilities for personal use or for sale.

Tool sets like BLAST and the NCBI databases are similarly democratizing life sciences. By making genetic data available to the public, independent researchers can build on previous work and, as you've mentioned, students can conduct their own research. With so much data available online, there are a host of opportunities for software development to help understand the data and for researchers to build on, rather than repeat, previous work.


Science Buddies: Today's students are coming onto the scene at a point when data sets are "already" big. What do you think is most important for students to understand about how big data is continuing to change—and what the challenges (or opportunities) are for life sciences moving forward?

Melissa: There is already an enormous amount of data, but not all data is created equal. I think students already have a reasonable grasp of the challenges and opportunities of big data, even if they don't realize it. From the flurry of updates, posts, pokes, and shares from social media to the thousands of results generated from online research, students must cull through masses of information and identify what is most important to them.

The amount of data will only continue to grow as more people contribute more information. The challenge and opportunity is first identifying truth, and then pulling the data you need and presenting this information in a way that suits your needs. There will be so many opportunities for students and professionals in a wide range of fields to help meet these needs of search, organization and presentation of data.


Science Buddies: What kinds of questions do you think scientists can continue to explore and better understand with the development of better bioinformatics tools for managing and visualizing big data?

Melissa: Better bioinformatics will help us answer questions from how to provide better healthcare to how to preserve species and understand climate change. Taking a very big picture view, our planet is full of living creatures that are complex in and of themselves and make up an even more complex network of relationships. By learning, capturing, and presenting information on the flora and fauna of the planet, we will be better able to feed, hydrate and care for humanity while maintaining or improving the environment.


Science Buddies: In the context of understanding biology what are the limitations of big data?

Melissa: Right now the computing power is really an issue when attempting to model biological processes. To really understand the mechanics of how our body works, there are so many parallel processes that even the fastest and most powerful computers are struggling, and as we learn more information, the computing power will need to increase exponentially.


Science Buddies: What kind of student will love big data and the world of bioinformatics?

Melissa: I believe the most exciting part of bioinformatics is that so many different fields are contributing to the field. Students interested in biology, chemistry, physics, computers, math, problem solving, or just being challenged will be able to contribute to the field. There are so many data sets that need analysis, and so much more that needs to be learned, that there are endless possibilities.


Science Career Profiles

Many STEM careers will involve working with big data, but students can learn more about a few specific careers that offer opportunities with big data in the following career profiles:



Special thanks to Melissa Rhoads. Melissa will be presenting at the USASEF X-STEM Extreme STEM Symposium on April 24 in Washington D.C.

Categories:

 

Take a sneak peak at an exciting pair of hands-on science and engineering activities that Science Buddies has planned for USASEF visitors and get inspired to make your own robots this week in celebration of National Robotics Week—or experiment with your own catapult project!

Bristlebots at USASEF in Science Buddies booth / hands-on robotics engineering


From National Robotics Week to This Month's USASEF Expo!

This week is National Robotics Week, a week dedicated to showcasing robotics engineering and "robo-technology." With the cartoon character Bleeker the rechargeable dog as mascot for the week and a set of free robotics trading cards that students can download and print, National Robotics Week is primed to engage and excite K-12 students about robotics.

Bleeker National Robotics Week Mascot
Above: Bleeker the rechargeable dog is the mascot for National Robotics Week.

Trying Toothbrush Robotics
To get started with toothbrush-head robots with your students at school or at home, see the following Science Buddies Project Ideas and posts:

The Science Buddies popular Robotics area continues to grow, and our scientists have been busy preparing a small army of toothbrush-based robots (AKA bristlebots) for hands-on fun at this month's USA Science and Engineering Festival (USASEF) Expo in Washington D.C. More than 3000 hands-on science, technology, engineering, and math (STEM) demonstrations will be on display at the USASEF Expo, April 26 and 27, 2014. Attendance to the Expo is free, but you can pre-register to be entered to win prizes. For full details, Expo map and program guides, and more, see http://www.usasciencefestival.org/.

Look for Science Buddies in Hall C, the Earth Sciences Pavilion, Booth 3722. Mark your map—or your app!


Robotics for Everyone!

As a stepping-stone project in student robotics, bristlebot robots let students start out with something super basic—a toothbrush head, a single coin cell battery, and a vibrating motor—and expand the project to integrate additional electronics learning, including more sophisticated breadboard circuitry, light sensors, solar cells, photoresistors, multiple motors, on-off switches, and more.

At USASEF, visitors to the Science Buddies booth will get a chance to explore and race light-following robots through a fun maze that our scientists have built. Pairs of USASEF participants will race their bots against each other using small flashlights to try and guide their bots to the finish line first.

If you will be at USASEF next month, make sure you plan to stop by and give one of the light-following bristlebots a try. You can also make your own bristlebots at home using the procedure at Science Buddies in the Build a Light-Tracking Robot Critter project. (See sidebar for additional information.)


Ping Pong Balls Away!

USASEF attendees who stop by the Science Buddies Booth will also be able to test their launch skills by trying out the ping pong catapult. Getting the ball to the target takes a combination of physics and engineering. Students will explore concepts of trajectory, launch angle, and pullback strength as they test their aim and then record the outcome of each shot (their data) on a composite data map that tracks the hit statistics for all Expo attendees as a histogram. With three target zones ahead, can you set up the catapult to launch the ball in the middle zone to score accuracy points?

The ping pong catapult kit (available in the Science Buddies Store) can be used with the following fun hands-on Science Buddies science projects:




Science Buddies is a proud partner of the USA Science and Engineering Festival (USASEF).
2014USASEF-logo.jpg


Categories:

 

Soft Robots: Alternative Robot Design


Robotics engineers are experimenting with soft robots and robots modeled after biological organisms. With a squishy project at Science Buddies, students can get in on the action and test their own soft, air-powered, robot.

A recent story in MIT News shows off a cool robotic fish and highlights the softer side of robotics. This new wave of robotics research explores the benefits and possibilities of robots that sport softer, less angular exteriors, designs often inspired by biological systems and organisms.

Designers of soft robots, like the robotic fish developed by the Distributed Robotics Laboratory, take a different approach to constructing the robot's exoskeleton and thinking about how the robot will move and interact with its environment. For example, a soft robotic fish, modeled after a real fish, can bump into things in its environment differently than a more traditional hard and angular robot. A soft robot may also be able to navigate areas that a more rigid-bodied robot cannot, and a soft robot that runs into something may cause less harm and suffer less damage.


Making Connections

Students curious about robot design and about soft robots can get started exploring principles of soft robotics by making their own gripper robot. In the Squishy Robots: Build an Air-Powered Soft Robotic Gripper robotics engineering project, students use a 3D printed mold and liquid silicone rubber in the construction of a gripper that can curl around and "grip" an object. What advantages does this soft-bodied construction have over other kinds of robotic grippers?

procedural photos from soft robotics student engineering project
In the Squishy Robots robotics engineering project idea, students use a 3D printed mold to make a silicone robot that they then power by air to use as a gripper.

For a look at creating a more humanistic robotic hand, see the Grasping with Straws: Make a Robot Hand Using Drinking Straws project. Using straws, students are challenged to design and construct a robotic hand, with bendable appendages, that works using a system of threaded joints. How many "fingers" does a robotic hand need? At how many points does it need to bend? What mechanism will cause the hand to bend, move, and grip?

Understanding and identifying the need or task for a robot is important in making robot design decisions. What does the robot need to pick up? How small are the items? How heavy are they? What does it need to do with them once it has grabbed them? Other questions to ask involve where the robot will be used. A robot being used in an underwater environment, for example, will have very different design requirements.

These are questions and issues engineers must consider as part of the engineering process when designing a robot. Will the best solution be hard or soft? Experimenting to better understand how varying approaches work is a first step for students getting started with robotics.


Additional information:


April 5-13, 2014 is National Robotics Week!

Science Buddies Project Ideas in Robotics are supported by Symantec.

Categories:

 

Microbiology yeasty beasties science project / Hands-on science STEM experiment

In this week's spotlight: a microbiology-themed family science experiment and science fair project. What conditions cause yeasts to be most active during fermentation? You and your students can find out by growing yeasts in different conditions and then using balloons to trap the gas released by the yeasts during fermentation so that you can measure it.


Categories:

 

Music science experiment - turn straws into an instrument / Hand-on science STEM experiment

In this week's spotlight: a music-themed family science experiment and science fair project. With a set of ordinary drinking straws, you can create a group straw "oboes." Can you play them? Sure! By blowing air through them, similar to the way you play a reed instrument, you can produce musical notes. At the end of the activity, you should have a set of straws, each of which will play a different note on a musical scale. What is the secret to changing the note each one plays? In this music science experiment, your students will get a chance to explore (and hear) the physics behind the production of sound!


Categories:

 

Improvements in the Science Buddies Crystal Radio Kit make building a crystal radio a science project students may enjoy for the school science fair or just as an independent electronics experiment—no batteries required! Our scientists have worked to improve the kit and procedure for the best student science experience.

Crystal Radio Science Project Photos
Above: photos taken during a student crystal radio project experiment using the Build a Crystal Radio kit from the Science Buddies Store.

The crystal radio project was one of our first electronics projects beyond the color-coded snap-together circuits that crop up in many households when kids are little. My oldest student did the pencil resistors project as his very first school science fair project. He followed that up the next year with the Build Your Own Crystal Radio experiment. (Note: Both of these projects are ones he selected because they appeared in the list of recommendations after he used the Topic Selection Wizard.)


A Classic Experiment

The crystal radio project is frequently among the most popular electronics explorations at Science Buddies. It is, after all, a classic introductory electronics project. Plus, this is a hands-on science exploration that gets bonus points for novelty and wow-factor. A radio you can listen to without a battery? And, these days you might add, without a solar panel?

That's pretty nifty electronics for many kids, and after going through the steps of building something hands-on, you get to put it to the test and see what stations you can tune in. Any confusion over why this radio is called a "crystal" radio is quickly cleared up during background research. (Hint: "crystal" is related to the fact that a crystal diode, often a germanium diode, is at the heart of the circuit. Learn more about the history of crystal radio sets in this interview.)

There are many, many ways to assemble a crystal radio. The year my son did the project, the kit at Science Buddies was much different than the kit now sold in the Science Buddies Store. The project, too, was older and did not contain the abundance of photos to help guide the build the way the updated Project Idea does.


A New and Improved Kit and Scientist-guided Procedure

This year, the Crystal Radio Kit sold in the Science Buddies Store was updated to address some common stumbling blocks and user feedback from students and families who had built crystal radios using the earlier kit, materials they gathered independently, or other novelty or toy-store science kits. Along with the changes to the kit materials, the corresponding Project Idea and step-by-step procedure got a snazzy face lift. As the new kit made its way into the Science Buddies Store, we put a few of the procedural steps in action to see how the new kit and the old kit compare.

When my student built his crystal radio for the science fair, he ran into a bit of trouble making "taps," a fairly common approach in building a crystal radio. (After making a series of "taps" along the coil, you clip alligator clips to the taps to see what stations you can hear.) Unfortunately, to make those taps, you have to strip the coating from looped sections of wire after every so many wraps around the coil—while keeping the coil nice, tight, and in place. Depending on your materials, this procedure can work, but we had trouble.

My student ended up using a hodgepodge approach and breaking the wire at the loops, stripping the ends, and twisting them to form the taps—no loops in sight. It was an important learning step for my student because we had to troubleshoot to find a way, with the materials we had, to do what we needed to do. In trying to sort out how to rig another portion of the circuit, he learned a lot, too, about where the current goes and whether or not it matters if things are clipped together—or just touching.

In the end, his crystal radio worked. He dropped a ground wire out the bathroom window, tied it to a pole next to the house, and strung antenna throughout the house at ceiling level. Then he sat in the hallway, ceramic ear piece in his ear, and he tried out his taps to see what stations he could hear. The stations he picked up with his indoor antenna are not ones that will replace a stash of MP3s, but the experiment was a success—and a winner at the school science fair, too.

The old crystal radio kit worked, and he had a great time with the project. But building the crystal radio using the new kit was even easier!


A Classic Project Made Even Better

The entire project has been rewritten to use a new set of supplies that remove the hurdles and headaches that many students (and sometimes their parents) run into when trying a crystal radio project. In the new kit, there are no taps. Instead, the kit uses a thinner gauge wire, and once the coil is wrapped, students use a brass tuning rod to search for stations. Very cool!

Say goodbye to the ear piece, too. While an ear piece currently still comes in the Crystal Radio kit, the new kit contains a speaker/amplifier element that lets students hear stations much more easily.

Not only are the materials in the updated kit better, and higher quality than the ones you may find in the kinds of crystal radio kits in toy stores, but the revised procedure is loaded with awesome close-up photos that show the build, step by step. This is a great, easy-to-follow, electronics project, and the kit makes the process straightforward and hassle-free. (As a parent, I speak from experience! I took a printout of the original procedure to a local electronics store to pick up an extra spool of wire, got assistance from a clerk, and still came home with exactly the wrong kind of wire. Having the right materials in the box may make a big difference in how smoothly a student science project goes!)

If your student is looking for a fun science project or a great at-home project for spring break or summer building, consider the Crystal Radio. It's a great stepping stone into the next level of electronics!


Categories:

 

Science Buddies has great ideas to keep your students engaged during spring break with cool science experiments they can do at home. Tweak our full science fair Project Ideas to challenge your kids to scientific spring break fun!


Ready or not... Spring Break is here again! Whether you are able to take time to be hands-on with your kids during the days off of school or need ideas for keeping them busy and engaged, Science Buddies has great science kits and fun project ideas and science activities that can help.

Each year, we single out a few new (or favorite) science projects and activities that make super family science or solo student experiments. This year, these new projects in the Science Buddies library stand out as great choices for spring break:

Spring break science / hands-on projects guide for families Spring break science / hands-on projects guide for families -- Theremin music project Spring break science / hands-on projects guide for families -- Baseball swing with catapult project

Spring break science / hands-on projects guide for families -- centripetal force with marbles project Spring break science / hands-on projects guide for families -- Make your own marshmallows project Spring break science / hands-on projects guide for families -- LED wearable e-textiles electronics project

Spring break science / hands-on projects guide for families -- Build a simple motor Spring break science / hands-on projects guide for families -- carnival games physics science project Spring break science / hands-on projects guide for families -- candy waterfall physics

Spring break science / hands-on projects guide for families -- make and test a homemade respirometer science project Spring break science / hands-on projects guide for families -- hovercraft Spring break science / hands-on projects guide for families -- LEGO tumbler physics project



More Great Science Activities

In addition to the ideas above, these posts on the Science Buddies Blog contain a wealth of great suggestions that can help parents plan Spring Break (or any other break) science activities and experiences for kids of all ages:

Categories:

 

This student's school science fair project yielded a few dozen eggs sporting the prints of various recycled ties salvaged from closets and secondhand stores. These eggs are not ones to eat, but for this young scientist, egg dyeing brought the pH scale to life and has given him new chemistry questions to explore as well as a solid introduction to the scientific method!

Student tie dye eggs chemistry science project / Jeffery

Above: Jeffery, wearing an awesome and very appropriate "egg" tie at the science fair. "Isn't my egg tie cool? I found it at the Goodwill when I was looking for ties to use," says Jeffery. "It has been my good luck tie. I'm wearing it to the state competition too!!"

Many families dye eggs each year for Easter, and whether they use packaged dye kits from the grocery store or try their luck with a variety of natural dyes, chances are good their dyeing method calls for the addition of some ratio of vinegar to water. General folk wisdom (and countless PAAS dye boxes) suggests that the pH of vinegar will help you obtain the most vibrant dye colors when using food color tablets to dye eggs.

According to the box, if you don't add vinegar to your soaking solution, you may end up with pale eggs, not the brightly colored ones shown on the box. This may be true when using boxed tablets, but according to Jeffery Austin, a fourth grade student in North Carolina, adding an acid to the recipe may not be a good thing if you are dyeing eggs with the fancy, upcycle, silk tie approach that has made the home and garden, parenting, and even Science Buddies rounds in recent years.


Dyed and Deviled

Jeffery and his family are tried and true egg dyers. He and his four siblings dye eggs each year, and then his mom makes deviled eggs. "It's a family tradition," Jeffery says. "Deviled eggs are my favorite," he adds.

This year, their egg dyeing tradition is getting a bit of a new-age twist. In addition to their regular dyed eggs, the ones they will later eat deviled, Jeffery's family will also be silk tie dyeing eggs, partly because it is very cool to take an old silk tie and transfer the pattern to a hard-boiled egg, and partly because Jeffery has spent a lot of time this year investigating the chemistry behind the process!


A New Wave of Egg Dyeing

The Dye Eggs Using Silk Ties for Egg-cellent Colors science project was a new addition to the Science Buddies library of Project Ideas last year, one that turns a popular trend in egg dyeing into a hands-on chemistry experiment for students. At the heart of the project is a simple question: does heat make a difference in how the process works?

Jeffery discovered the chemistry project while looking for a topic for his 4th grade science fair, and thought it looked cool. The pH scale hasn't been covered yet in his science class, but he said it appears in a few of the books he has, and he was particularly intrigued by the discussion of acid dyes in the project.

Jeffery ran through the basic project procedure quickly. He even put the question of heat in the process of using silk ties to tie dye eggs to the test in other ways out of curiosity as he tried to isolate and examine different variables at work in transferring tie designs to the eggs. He quickly made determinations about what worked and what didn't in terms of heat, but what really caught his interest was a line in the project about the use of vinegar in the dyeing process.

"When using acid dyes, acids are needed for the silk ties to be dyed, and acids are needed for the eggs to be dyed. So the eggs are soaked with vinegar during the dyeing process in order to help the acid dyes transfer their color from the silk ties to the eggshells."

Based on the information about acid dyes, the role of vinegar as an aid to the chemical reaction that occurs during the dyeing, and the reality that there are many other acids that fall in different places on the pH scale, Jeffery veered off on his own and designed a new variation on the experiment. If the pH of vinegar is good for acid dyeing eggs, is an even more acidic solution even better?

Jeffery pulled together his science fair project, testing different agents, including vinegar, to see how different acids affect the way silk tie patterns transfer to eggs. The hardest part of the project, says Jeffery, was waiting for the results of each egg dyeing experiment. It took a lot of patience, says Jeffery. "It was hard to wait 20 minutes to cook each egg. What was behind the cloth? There were so many possibilities and thoughts in my head as to whether the egg would be darker or lighter. I was so excited to see what the result was."


A Cracked Science Project

After all the waiting, Jeffery's eggs did not turn out the way he expected. Puzzled, he did a second round of egg dyeing, which yielded the same results. It was a scientific setback.

"I was so upset," recalls Jeffery of his disappointment with the outcome of his testing. The eggs had all taken on some patterning from the ties, but the ones that ended up darkest were not the ones he had predicted.

"I didn't even want to enter my project into the science fair!"

Thankfully, Jeffery's parents had excellent (or egg-cellent, in this case) advice for him. "My parents told me that things like that happen to scientists all of the time and that sometimes being wrong was just as important as being right."

samples from tie dye eggs chemistry science experiment

Important Lesson for Student Scientists

Students do not always find that their hypothesis is supported by their testing, and this is okay! The goal of doing a hands-on experiment is not, in fact, to prove a hypothesis to be correct. Instead, the goal is to learn something by following the steps of the scientific method (or engineering design process), experimenting, gathering data, analyzing the data, and then drawing conclusions. Discoveries are often made when something doesn't work out as expected!

Jeffery entered and won his school science fair. He then moved on to earn a bronze prize at the district fair, a third place award at the regional fair, and the chance to present his project at this year's North Carolina Science and Engineering Fair.


New Questions to Explore

Jeffery's hypothesis about the role of an acid in tie dyeing eggs didn't pan out, but his experiment opened up new questions for him--and for Science Buddies! Jeffery was especially disappointed with his results because he based his experiment on information in the Science Buddies project. The Science Buddies procedure focuses on the variable of heat. But Jeffery's experience with acids in the process raises interesting questions about other variables.

Not tired of egg dyeing yet, Jeffery is working with Science Buddies to do some additional testing and a new, controlled experiment focused on acid dyeing to put his findings to a next level of testing.

This year, when his family dyes eggs, there will be a few that are truly "tie" dyed. "We are definitely going to dye eggs using ties this year, but my mom says we can only use one tie each," says Jeffery. After a science season of Jeffery's ongoing egg dyeing experiments, his mom is opting in favor of the family's favorite deviled eggs. "You can't eat the eggs afterward because the acid dye from the ties can make you sick if you eat them," explains Jeffery.

The special tie dyed eggs are for looks only, but the whole experience has given Jeffery a chance to dabble in chemistry well beyond the science his fourth grade class has been exploring.

When not dyeing eggs, Jeffery enjoys Cub Scouts, participating on the NC Science Olympiad team, and playing Minecraft. He hopes to someday be a neurologist. "I just learned that Alzheimer's is the third leading cause of death in NC and the 6th in the nation," says Jeffery. "Why is it higher here in NC? I would like to find out!"

We can't wait to hear about his science experiment next year!

Categories:

 

As college basketball's spring championship gets underway, student fans can apply math and physics in hands-on science experiments that help highlight secrets to hoops success.

Basketball sports science bank shot experiment / Science Project

Student Sports Science

Great hands-on sports science projects help students explore science, physics, and math principles at work in the sports they love to play and watch. The image above is from the Basketball: Will You Bank the Shot? science project. The homemade simulation lets students experiment to see how bank shots perform from different spots on the court. When should you bank to increase the odds of scoring?

Football season is over. Baseball season hasn't seen its first pitch. Winter Olympics gold has been awarded. Triple Crown racing is still a few months off. For sports enthusiasts, this all adds up to one thing: March Madness!

March Madness is a single-elimination tournament for NCAA Division I basketball teams. Sixty-eight teams, thirty-two of which are division winners, and the balance of which are "at large" teams named to the tournament on Selection Sunday, will go head to head on the courts, whittling the two regional brackets down, game by game, to the Sweet Sixteen and then again to the Final Four, before the final game.

True to its name, this year's March Madness, which began on March 20, 2014, is kicking into fevered pitch with basketball fans trying to predict perfect brackets (predicting who will win each game to make it to the final two). On Twitter, fans are following and tweeting using the #MarchMadness hashtag, but diehard spectators and hoops enthusiasts may be tracking dozens of hashtags devoted to the multi-week championship and playoffs. For a look at some of the social media streams fans and sportscasters are using to follow their March Madness favorites, see "100 Twitter Hashtags to Follow During March Madness" on the Huffington Post.


Court Science

Students who love basketball can take time in between games to experiment with some science related to top court action. The following hands-on science project ideas encourage students to dig into the science of basketball:

  • Basketball: Will You Bank the Shot?: in this super cool experiment, students create a simulation from ordinary materials (like a cardboard tube) and use a mini ball to explore how the chance of scoring a bank shot changes depending on where the shot originates on the court.
  • Basketball Physics: Where Does a Bouncing Ball's Energy Go?: when a player dribbles, what happens to the energy of the ball? In this sports science investigation, students experiment to find out if there is a relationship between dribbling and heat energy.
  • Bouncing Basketballs: How Much Energy Does Dribbling Take?: dribbling on the sidewalk or at the local park court may feel very different than dribbling in an indoor gymnasium. In this hands-on science project, students experiment to find out how different surfaces affect how a ball bounces. Does it take more force to dribble on certain surfaces than others to keep the ball under control?
  • Nothing But Net: The Science of Shooting Hoops: where should you begin a shot for the best chance of making it? In this science project, students test to see if starting the ball from chest height, chin height, or over the head makes a difference in the percentage of successful shots.
  • Basketball: The Geometry of Banking a Basket: in this science project, students apply math and geometry to predict the chances of making a bank shot from various spots on the court. After doing this project and coming up with a set of "best chance" shot locations for a bank shot, students can keep tracking during March Madness games and see how their predictions match up to actual shots made (or missed).

Basketball science sports dribbling energy / Science projectBasketball science sports bank shot angles  / Science project

Basketball science sports bank shot math / Science projectBasketball science sports dribbling bounce energy and heat / Science project




Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Time Warner Cable

Categories:

 

Zoology science experiment on habitats and environments for pillbug or sowbug / Hand-on science STEM experiment

In this week's spotlight: a zoology family science experiment and science fair project that encourages families and students to observe pillbugs or sowbugs up close by creating cozy but different microenvironments and seeing which the bugs prefer. Although they are frequently found in the soil, pillbugs and sowbugs are not insects; instead, these bugs are crustaceans and breathe with gills.Will this have an affect on which microenvironment they choose? Put it to the test in this easy indoor science experiment that encourages observation skills as students watch to see how the bugs respond to the different microenvironments they create and perform their own bug counts at regular intervals.


Categories:

 

Kate Lande hasn't ever run into a skunk, but thanks to her 6th grade science project, she knows all about the role of oxidation in combatting stinky smells.

Kate / Student Science Success Story / Chemistry of Skunk Smell

Student Science in the Real World

As a 6th grade student, Kate Lande (pictured above) put an old folk remedy for getting rid of skunk spray smell to the test. She later discovered that her science research came in handy when her dog rolled in a decaying octopus!

Kate / Student Science Success Story / Project Display Board

Sharing the Results

A Project Display Board, like Kate's shown above, is an important part of the school science fair project. Find tips for presenting your data and constructing your board in the Science Fair Project Display Boards resource, sponsored by Elmer's® Products, Inc.


At Science Buddies, we know that the idea for a great student science project can come from anywhere. Something a student sees on TV may spark a question. A favorite hobby may inspire an experiment. A family health challenge may guide student inquiry. Science projects can be constructed around and about anything, even something that totally stinks!

After watching episodes of MythBusters and Fetch! (PBS KIDS GO) about treating and removing skunk smell, Kate Lande, then a 6th grade student in Washington, got inspired to tackle her own smelly science chemistry experiment.

"It looked like a pretty crazy project," recalls Kate, "but I decided to try it anyway."

Inspired by the challenge of getting rid of skunk smell, a smell notorious for its noxious, lasting power, Kate crafted her experiment for her required 6th grade science fair project. Tomato juice is a well-known folk remedy for skunk spray smell. We've all seen sitcoms where a family pet—or family member—ends up soaking in a tub of tomato juice after an unfortunate run-in with a black and white striped bandit. But does this remedy really work? Is tomato juice really an effective approach to remove the smell from something that has been skunk sprayed? And, is it the best way to get rid of skunk odor?

That there are no skunks where she lives didn't stop Kate from digging into the chemistry of the smelly problem. "I've never seen a real skunk, but I've smelled skunk spray on some of the road trips I've taken with my family," says Kate. After working with imitation skunk spray for her project, the scent is firmly rooted in Kate's head. "To me, it smells like an awful mix of burned rubber, rotten eggs, and skunk cabbage (a type of plant that grows in swampy areas—it really does smell like skunk, and there's lots of it [in my area]! In wild areas, bears love to eat it.)."

Anxious to put folk wisdom about tomato juice to the test—and to pit it against other potential remedies—Kate got started. Her background research on thiols and oxidation gave her a strong sense of what she thought would happen and how her test remedies would perform. She set up her hypothesis, designed her experiment, and called upon some volunteer noses.

What was the hardest part about experimenting with methods of skunk odor removal? "It was definitely a challenge to work with the skunk spray liquid," says Kate, "both to keep it off of myself and to tolerate the terrible smell!" She did it, and when she was finished, she contacted Science Buddies to share her project.


Smelly Science at Science Buddies

Inspired by Kate's stinky science project, Science Buddies staff scientists used Kate's investigation during the development of a new Project Idea at Science Buddies. Today, students interested in wildlife, chemistry, or just smelly science, may undertake the Skunk Attack! Test Different Remedies to Remove Skunk Odor science project and get hands-on with different ways to neutralize (or oxidize) thiols, the class of chemical compounds into which skunk spray smell falls.

Kate is excited that an adaptation of her science project idea is now available at Science Buddies for other students. "It feels pretty cool," she says. "I'm proud that my project idea was an original and that I did it well enough to be listed on an actual science website."

For students who decide to investigate skunk spray, she cautions, "This is definitely an outdoor project. We live on a big farm, so we picked an area well away from our house to do the experiment."

Kate also says to keep in mind that skunk spray may be just the beginning! She found that the odor remover she tried also works in other smelly situations. "Like the time our Labrador rolled in a dead octopus," says Kate. "We were walking on one of Vashon Island's beaches, and she found the octopus and rolled in it before we could stop her. She smelled horrible!"

After checking with the local veterinarian, Kate got instructions for using the odor remover safely on her dog, and it worked. "The solution also works on horse and sheep manure. Since we live on a farm, there's plenty of manure, and sometimes our dog rolls in it (but not very often, thankfully!)."

What odor remover did Kate test and discover to be effective at removing a range of stinky smells? You will have to conduct your own chemistry experiment to find out. In the Skunk Attack! Test Different Remedies to Remove Skunk Odor science project, you and your volunteers can do a sniff test to see which of four different possible remedies is most effective—and why. The nose knows best, but when it comes to skunk smell, chemistry holds the key to successfully "destink" the situation!

This year, Kate's 8th grade science project involved measuring the amount of sugar in soda. If you want to explore the science of that sweet subject, see the How Sweet It Is—How Much Sugar Is Really in That Soda? project.

In her spare time, Kate loves to read, write, draw, and make videos with friends and family. She also enjoys being outdoors, exploring nature, camping, and hiking. One of her goals is to climb Mount Rainier.

Categories:

 

St. Patrick's Day Rainbow with milk, soap, and color science / Hand-on STEM experiment

In this week's spotlight: a family science experiment that lets you and your children make a rainbow in keeping with St. Patrick's Day! What happens when you put drops of food coloring in milk? What happens when you add a bit of dishwashing liquid? Put it to the test in this science activity for a fun, colorful look at the role of a surfactant and how it changes the surface tension of a liquid.


Categories:

 

Serving up Some Pi Pie for Pi Day


March 14 is Pi Day, so grab a slice, and your best memorization skills. How much Pi can you remember—which is not quite the same as how much pie can you eat!

Pi Pie by Kat M - great tribute to Pi day with number-topped pie

Celebrating Pi Day with Pie

A Google search or a Pi-focused look at Pinterest turns up all kinds of great Pi pie. The pie above, with the opening numbers of Pi cookie-cut and used as the top crust is a wonderful tribute to Pi! Image: Kat M.

Pi. Pie. When it comes to students of a certain age, there is often a very fine line between the two, and celebrating Pi Day often involves real pie as both a treat and a demonstration. Pi. And pie. There are a bazillion digits (and counting) in one and eight conservative or four generous slices in the other, but there is clear overlap beyond the fact that they both use a "p" and an "i" and are, grammatically speaking, homophones. They sound the same, but they also share an affinity for circles. Pi (π) represents the ratio of the circumference of a circle to its diameter, and pie, typically, is presented in the form of a circle.

No matter how you slice it, you can use pie to observe Pi in action, which makes things handy when it comes to dishing up some tasty math. Speaking of pie, if you know the formula for finding the area of a circle, then you will understand this math joke "Pies are not square, they are round." (Confused? The formula for determining the area of a circle is A = πr2. Read it out loud to "hear" how it sounds. Then entertain your kids in class, in the car, or at dinner with your pithy math humor.)


Celebrating Pi

Today is Pi Day, and when I went looking to see what I said last year about Pi Day and the interminable decimal places of venerable Pi, the sequence that both enthralls and haunts many mathematicians, I discovered that no blog post exists at Science Buddies on Pi. 3.14159 what?

How can this be? I know the Golden Ratio has come up. I know Fibonacci has made an appearance. I know I've regaled the virtues of histograms and data collection and even the sorting and counting of M&Ms—for fun or for an exploration of survival and camouflage. I've shared a tale of a few hundred straws, hexagons, and a geodesic dome that almost didn't fit through the door. But no coverage of Pi Day?

It is completely irrational.

As is Pi!

For mathematicians, Pi Day is a day to pay homage to a serious number, a number that isn't really all that big when you think about the fact that 3 is smaller than 4. But Pi is a number that stands the test of time and a number that mathematicians have spent countless hours studying, memorizing, computing, and exploring. Like the Golden Ratio, Pi is an irrational number, a number that cannot be expressed as a simple fraction, a numbers whose decimal place digits continue endlessly without repeating. (According to the Mathisfun website, "People have calculated Pi to over a quadrillion decimal places and still there is no pattern.") Want to take a look at the first million digits? You can see them on the Pi Day site.

So how many digits of Pi do you know? We shorten Pi, all the time, to 3.14. When we multiply something by Pi (like r2 when solving for the area of a circle), we multiply by 3.14. But, really, with more than a quadrillion decimal places known, there is a whole lot more to Pi than just 3.14! There are competitions even to see how many digits of Pi people can recite. The Guinness World Records holder set the current record in 2005 by reciting 67,890 digits of Pi, a verbal feat that took more than 24 hours.


Making Connections

What's the longest number you know? A 9-digital identification number? A 10-digit phone number? A 16-digit credit card number? What's the max number of digits you can commit to memory and why?

Memorizing Pi to thousands of places doesn't necessarily have a purpose, but it is an interesting test of memorization technique and skill. Students can explore variables that may influence numeric recall in the How Many Numbers Can You Remember? project. This project can be great for an independent student project, fun as a class activity, or just good for family dinner conversation. You can use any numbers in the project, including randomly generated number strings, but this is a great experiment to do with the digits of Pi—even while eating pie on Pi Day!

If memorizing more than a few digits of Pi seems complicated to you, what happens if you explore the use of mnemonic devices? We often think of mnemonic devices as a way to help remember items in a sequence (like the planets) or a list of things, but people do come up with mnemonic devices to help with the recall of number strings, too.

To find out more about mnemonic devices and to put a few to the test, see the full Memory Mnemonics science project or check out our family-friendly activity version, part of Scientific American's Bring Science Home.

Have a great Pi Day 2014, and if there is pie, let it be circular and sweet.

Pi Day Pi Pie Screenshot from Google search
In looking at material for this blog post, a simple search of "Pi Pie" at Google let to an amazing array of Pi pie. The screenshot captures a few of the images that came up from all over the Internet. Clearly, there are lots of people inspired by Pi and happy to celebrate anything that involves pie!


More Family and Classroom Math

For suggestions on ways to integrate math into your everyday classroom or family activities, see Making Room for Math.

Categories:

 

Renewable energy is hiding in places you might not think to look! For a glimpse into the future of power generation, experiment with a microbial fuel cell.

By Kim Mullin

Microbial fuel cell hacker board / Energy science kit

Microbial Fuel Cells—Building Your Own Alternative Energy Experiment

After assembling your microbial fuel cell using a kit (available in the Science Buddies Store), connect the fuel cell's hacker board, shown above. Within 3-10 days, the hacker board should begin blinking, though you will start taking measurements right away!

In addition to the microbial fuel cell projects listed, students interested in alternative energy projects might explore:

Ask anyone about sources of renewable energy, and they are likely to mention solar power, wind power, or perhaps even geothermal power. Hydro (or water) power, too, may come up, but when you talk about water as a renewable energy source, you probably are talking about energy harnessed from falling or running water.

But what about the dirty water running through our underground sewage pipes? What if a wastewater treatment plant could power itself with the very water that it is supposed to clean?


Beyond Sun and Wind

The idea of producing energy from dirty water isn't as far-fetched as it sounds. Thanks to something called a microbial fuel cell, extracting energy from microbes such as bacteria is possible. Why? Because some types of bacteria produce electrons when they feed on the nutrients found in places such as dirty water or soil—both of which are easy to find! In a microbial fuel cell, these electrons can be captured by electrodes and used as a power source.

You may be wondering what sorts of "nutrients" can be found in dirty water and soil. After all, humans depend on fresh fruits, vegetables, and proteins for the vitamins and minerals that help us thrive. However, some types of bacteria can live on compounds that our bodies treat as waste. For example, the urine that we flush down the toilet is full of nitrogen, and nitrogen is part of a healthy diet for some types of bacteria.


Harnessing the Power of Bacteria

Scientists discovered electricity-producing bacteria in the early 1900s, but recent interest in renewable energy has increased research in this area. To make microbial fuel cells a viable renewable power source, one important question that scientists must answer is how to best maximize the amount of electricity that they can produce.

With the Science Buddies Project Ideas below, you can be a renewable energy scientist. Try any of these projects to get started:


Powering the Future

While you shouldn't expect to be recharging your cell phone with a microbial fuel cell next year, it is possible that one day this technology will be as common as solar panels. Will you be among the scientists who explore innovative ways to keep up with our energy needs?


Microbial fuel cell alternative energy kit from Science Buddies Store




Support for this Project Idea was provided, in part, by PG&E



Categories:

 

Carnival Games science / Hand-on STEM experiment

In this week's spotlight: a mechanical engineering experiment and family science activity that takes a scientific look at why a popular carnival game may look easy to win but may, in fact, be really difficult. How does the distribution of mass in the way milk bottles (or plastic bottles of colored water!) are stacked affect how hard or easy it is to knock the bottles over? Put the question to the test with your own home version of a classic carnival game!



Categories:

 

Baking Up a Science Project


A batch of homemade muffins can easily turn into a great hands-on student science project. Grab some bowls and choose your variable!

By Kim Mullin

Student doing kitchen science experiment with muffins
Image: My son headed to the kitchen for a recent science project and found that using the scientific method, making muffins can yield tasty science.


Pumpkin muffins are a mainstay of our family's snack repertoire. I love that they are full of vitamin A, and the kids love that they have chocolate chips in them. My 12-year-old started making them by himself this year, and he's a very practical person, so it didn't surprise me when he decided to make muffins for his science experiment. "Mom, I can do my homework and make a snack at the same time."


Finding the Science in the Everyday

So how can making muffins be a science experiment? All you have to do to turn the process into hands-on science is try controlled variations (changing only one variable at a time) on the recipe or directions. For example, what happens if you bake batches at different temperatures? What happens if you change, substitute, omit, or add ingredients? My son chose to bake batches using different amounts of baking powder to see how the change in quantity would affect the height of the resulting muffins.


The Scientific Method in Action

For his school science assignment, he needed a control group and three different test groups. Rather than bake four whole batches, which would have given us 96 muffins, he chose to make four half batches. Happily, the recipe was easy to divide in two.

After gathering all of his ingredients together, he pulled four bowls out of the cupboard and labeled each one with the amount of baking powder it should contain. His control batch contained the regular amount of baking powder called for by his recipe, and the test batches contained 1) no baking powder, 2) half the normal amount of baking powder, and 3) double the normal amount of baking powder.

Throughout his experiment, he was careful to keep all other variables the same. Because he couldn't bake 48 muffins all at once, he chose to measure only the dry ingredients into each of the four bowls. He added the egg, vanilla, and other "wet" ingredients only when he was ready to put a batch in the oven. Of course, the oven was set to the same temperature for each batch, and he used a timer to make sure they all spent the same amount of time in the oven.


The Proof is in the Muffin

Once the batches were cooked and cooled, it was time to test his hypothesis about how changing the amount of baking powder in a recipe would affect muffin height. He cut each muffin at its highest point, measured it, and entered the data into a spreadsheet. Before taking the average height of each batch, he opted to throw out the shortest and tallest muffin in each batch—the outliers. What do you think his results were? I'm not letting on, except to say that they were awfully tasty!


Science Doesn't Have to Involve Lab Coats

Was this experiment "hard"? No. But it was a straightforward way to solidify the concepts of hypothesis, variable, control, data analysis, and conclusion in his mind. And, because his dad is a statistics geek, they were able to have interesting conversations about mean, median, range, and statistical significance—while enjoying a muffin and a glass of milk!

So many of the things we do everyday involve scientific principles. Help your kids make the connection!


Your Own Kitchen Science
If you and your kids are inspired to do a muffin-making (or cookie-baking) project similar to the one my son did, the Chemistry of Baking Ingredients 1: How Much Baking Powder Do Quick Breads Need? food science project contains a full procedure to get you started. For additional ways to "mix up" the experiment, be sure to check the Make it Your Own tab. If you are looking for a simplified version of this experiment, perfect for family together-time, see our family-friendly adapation for Scientific America's Bring Science Home.

For other food science experiments and family science activities for the kitchen, you might try one of the following:


Categories:

 

Giant metal traffic control robots installed on busy streets in Africa remind students that robotics engineering tackles projects and issues that may require very big OR very small solutions.


Robot Cop for Traffic Control
Image: "Now, Robocop helps manage traffic in Kinshasa," India Today Online.

Recent robotics engineering projects at Science Buddies have shot my perspective on robotics with a shrinking serum, something that's taken my preconceived ideas about robots, drawn largely from growing up with the Jetsons on television and C-3PO and R2-D2 on the big screen, and tossed them down a long Alice and Wonderland-styled tunnel where they have emerged miniaturized and decidedly non-humanoid. Think of the skittering crew of cookie robots in Despicable Me (2010). Small. Fast. Stealthy. Focused. Hungry. Bots on a mission.

This is a new class of bots, a far cry from bots like The Iron Giant (1999), Johnny 5 in Short Circuit (1986), and Wall-E (2008). Whereas those bots won us over with their human-like qualities and similarities, not all bots are built at that scale. Both on- and off-screen, the bots that have been crossing my radar lately have been small, and smaller, and then even smaller, reaching coin-sized proportions most recently in my interview with Dani Ithier, a student in Harvard's Microrobotics Lab, where they are working on bug-inspired bots.

Smaller and smaller, a tale of shrinking robots, until a CNN story and images of the "Robo Cops" installed in Kinshasa, the capital of the Democratic Republic of Congo, crossed my desk.

Two towering aluminum bots have been installed in the middle of congested highways to help alleviate traffic flow problems. Those two bots, eight feet tall and bearing familiar human facial features, remind me, visually, of bots from old-school science fiction. These traffic cops look like the kind of (non-functional) bots kids construct out of cast-off parts from the garage and cardboard boxes salvaged from the recycling bin, but these bots represent sophisticated engineering. The traffic robots are reportedly powered by solar panels, have on-board surveillance cameras, and can talk. This is high-tech, robotic traffic control being conducted by robots that "come sporting sunglasses like real cops," reports India Today Online. From up high (eight feet plus the pedestals on which they stand), these robots are taking on the combined roles of traffic cop, streetlight, and pedestrian walk signal, all in an effort at reigning in a mounting traffic problem.


An Infinite Number of Designs—and Functions

The story (and image) of Kinshasa's robo cops is an excellent reminder about the breadth of functionality and design for robotics engineers. Smaller is not always better and it not always the solution. Many robots are designed to do a very specific task. They may or may not need to have a full set of "humanoid" body parts and appendages. A robotic hand, for example, may be developed to do a single, focused task, and the parameters of that task—What needs to be picked up? How heavy is the item? How far does it need to be moved?—may guide the design. Specifying the requirements of a solution is an important step in the engineering design process. Students can explore this kind of design and the engineering issues that arise in projects like Grasping with Straws: Make a Robot Hand Using Drinking Straws and Squishy Robots: Build an Air-Powered Soft Robotic Gripper.


Robots for Safety

Looking at the Kinshasa robo cops also highlights the use of robotics in ensuring safety, through prevention, through ongoing presence and monitoring, and through disaster relief. Students can explore safety-related robotics engineering and design in hands-on science projects like these:

Categories:

 

Suspension Bridge science / Hand-on STEM experiment

In this week's spotlight: an civil engineering project that lets students and families experiment with bridge design. You may be familiar with famous suspension bridges like the Golden Gate Bridge in San Francisco, but how does a suspension bridge really work? How do the cables work to support the weight on the bridge? Can a suspension bridge carry a greater load than a beam bridge? With common household materials, you can put your own straw-based bridges to the test. How many pennies can your suspension bridge hold compared to a bridge without cables?



Categories:

 

Science fair projects let students learn, use, and demonstrate important science and reasoning steps, and the benefits of hands-on and active exploration compared to more passive modes of learning or rote memorization are well-documented. So why do so many parents scowl at the science fair project assignment? What makes the science project a stressor for many families rather than an anticipated and positive learning experience? Is it simply a matter of perspective or an incomplete understanding of what a science fair project is and should be? There are many steps teachers can take to help transform the science fair project experience, but what does it take, at home, to transform the science project assignment from something parents dread into something parents celebrate as a critical and invaluable step in their student's learning?


Turning Turmoil into Terrific / Science Fair Project Display Board for parents

Better Understanding the Science Fair Project: Helpful Resources for Parents

The following resources and articles may help parents reconceptualize the importance, value, and process of a student's science fair project assignment:

Sign up to receive Science Buddies' monthly newsletter


Social Media Lashes Out at the "Science Fair Project"

Have you seen it? The GoldieBlox Super Bowl ad, yes. The LEGO® Movie, yes. The tongue-in-cheek project display board bemoaning the science fair project process and citing a more than 75% dissatisfaction rate among students and parents, as measured by the number of students who cry and the number of parents who yell during the process? Probably.

You may have seen the project display board crop up on your favorite social media site. You may have been surprised to see it pop into your stream from distant corners of the country or globe, from parents and grandparents alike. You may have been surprised to see it crop up in the stream of a parent or friend who you know has a very engineering- or science- or technology- or math-oriented kid, a parent you know spends countless hours encouraging, lauding, and supporting her student's hands-on science and engineering projects—and proudly sharing those same projects with her friends and followers.

It happened to me. I first saw the "science project turmoil" project display board shared by the parent I would least expect to spare it a second glance, much less share it. The next morning, I saw the photo shared by someone else in a completely different part of the country, someone who doesn't even have school-age children. As friends of those friends weighed in with a comment or a thumbs-up on the post, notifications kept popping up (accompanied by a 'beep' on my system) letting me know how much "support" the photo was getting from other people who saw the photo and agreed enough to click 'Like,' or leave a comment, or share the photo on their own stream. I didn't see anyone rebutting the image or standing up on behalf of the virtues and values of hands-on science education—at least not in those two shares of the photo. Even from teachers, I saw "likes."

Puzzled by the near-instant wave of people latching onto the image and issue, I went to the source—the original photo posted in March 2011.

It is both fascinating and frightening to read through the comments on the original photo. There are, thankfully, some people who weighed in noting the positive nature of hands-on or active science education. There is, in fact, a comment by the board creator where it seems that, in part, her complaint is really aimed at the way science fair is presented in elementary school—at the fact that the "competition" aspect of science fair may overshadow the point of hands-on science and turn the science fair into something else, something that invites and encourages far too much parent involvement. Her comment (#48) is there, but as the turmoil board picked up steam anew last week, it appears that by and large, people saw the "turmoil board" and were compelled to join the wave of "why do a science project" comments, a tidal wave of anti-science education sentiment that took on new life with each new like.


Why Do a Science Project?

What gave the "turmoil board" steam when it resurfaced? What prompted people from all corners to share, reshare, like, and comment? If many of those people are people who actually support, encourage, and even enjoy hands-on science and engineering activities with their kids, you have to dig deeper to see what's really at issue here.

Take the science (or engineering) out of it, and the "project" stands alone, with the assumed "assigned" or "fair" being the silent partner in crime, the elephant in the room. The board creator even suggests that without a competitive fair, science projects could be approached differently for elementary school children, done more as family projects and explorations. In other words, it is specifically the school science fair project that is being projected as the cause of family turmoil.

The board, with its googly eyes overlooking the hand-drawn results diagram, goes on to explain why.

The photo got under my skin, maybe because it was shared (and liked) by people that I didn't expect to share (and like) it. It was shared and liked by people who I know value science education, people who I know are proactive and publicly involved in the education systems in their areas.

So why the widespread jump on the anti-science fair project bandwagon? What buttons did the "turmoil board" press?


Kids Doing Science

At Science Buddies, I am one of the non-scientists. I am exactly the kind of parent that might seem to fall into the "science projects cause family turmoil" camp simply because "science fair" isn't my forte—science fair puts me well out of my comfort zone.

Before Science Buddies, maybe I would have been drinking the science-causes-turmoil Kool-Aid. It is hard to know how I might have approached a science fair assignment before Science Buddies. I can't go backwards and manipulate the variables or set up a control to see how my family would have weathered science fair season without the benefit of knowing about the project ideas and resources available at Science Buddies.

Thankfully, there is Science Buddies.

As a parent of elementary and middle school children, I have, over the last few years, done and witnessed a wide range of science and engineering projects with my kids, ones that have been completed for science fairs and ones that we have done together as family activities.

My lack of engineering and electronics experience didn't stop us from tackling toothbrush robots, light-following Bristlebots, a crystal radio, pencil dimmer switches, play dough electronics, and more. That doesn't mean I didn't wonder with each project if I knew enough to guide the activity or help troubleshoot problems that might come up with the independent (science fair) projects. But, all in all, science fair projects in my house have gone smoothly and been positive experiences all around.

So, where was the turmoil?

There was much more angst with the "build a mission" project, a California History assignment in the 4th grade and a clay roof that took hours with a hair dryer to try and harden. There was plenty of angst any time an assignment to "dress up as your historical subject" came home. (We didn't happen to have Ben Franklin-suitable attire on hand.) Making a half dozen artifacts to go along with a history research project certainly took as much time as the science fair project. Indeed, there have been flurries and scurries with a wide range of creative and "craft"-oriented exercises and assignments.

So what's the problem with the science fair? And, more importantly, what does it take to turn a standard science fair assignment into a positive, successful learning experience for students and a positive parenting experience for the grown-ups?


Helping Students (and Parents) Enjoy the Science Fair Project

As I watched the fervor over science fair mount, triggered by a marker-drawn project display board, I wanted to pass out Science Buddies stickers to every person who clicked "like" or "share" or wrote a comment commiserating with the horrors of science fair.

I wanted to grab some markers and make my own Project Display Board of all the things I know that Science Buddies offers that can help remedy the problem, all the tools and guidance that can transform the science project into something students and parents look forward to as a fun way to get really hands-on with a cool science question.

If only all of those parents knew about Science Buddies, I kept thinking. Of course, I work for Science Buddies. So I have an inside view. I know that more than fifteen million other people, including students, teachers, and parents also know about Science Buddies and count the non-profit and its free, online resources as a trusted source. I know they visit the site each year when science fair rolls around.

I can only assume that the "turmoil board" creator may not know about Science Buddies and may not know about the Topic Selection Wizard.

We need Science Buddies stickers. We need a badge kids can sew on to a troop uniform. We need to go viral in the same way that the "turmoil board" went viral.


Science Buddies and the Student Science Fair Project

Science Buddies has a whole set of keys that can help transform the science fair "turmoil" into a successful experience for students and parents. In part, parents have to get beyond their own fear of science and their own assumptions about science fair. You don't have to be a science expert to help an elementary student do a school science project. But you do have to have the right idea about what a science project is, what it can be, and how to approach it to maximize the learning experience—and enjoyment—for your student. You also have the right to expect that a science fair project isn't simply a homework assignment, something sent home with a due date several weeks in the future and not integrated at all in the day-to-day classroom.

For science fair projects to be successful, teachers have to ensure that projects are integrated into the classroom learning and monitored with clear schedules and check-ins that help students stay on track and also teach students how to break a big project down into doable parts. Science fair projects should not be done the night before they are due. Ever.

There are a number of ways in which teachers can (and should) help smooth the science fair project experience. But in responding to the "turmoil board," the following reminders for parents and students can make a big difference in how the process goes at home:

  1. Plan ahead. This is a big stumbling block for many students and parents. Waiting until two days before the project is due to select a project or buy supplies is a guaranteed recipe for disaster (and family stress). Plus, waiting too late in the process limits what kind of project your student can do. The project your student might be most excited by might take weeks to complete. That doesn't necessarily mean it is a more difficult project, but projects in certain areas of science may take more time—plant biology projects, for example, or setting up and testing a microbial fuel cell for an environmental science project.
    Note: proper scheduling of the project and assessing a student's progress throughout the project window is a teacher's responsibility and can really help alleviate science project stress, procrastination, and confusion. When properly scheduled and managed with in-class due dates and timelines, parents should not suddenly learn from a panicked student that the science fair project is "due tomorrow" and has not been started. (See the Science Fair Scheduler Worksheet in the Teacher Resources area.) Parents can help students set up calendars and put time to work on various parts of the project on a schedule to help reinforce the time management and planning skills students are learning and using.
  2. Pick a great project idea. A half-baked project idea should not be the cause of science fair angst. At Science Buddies, there are more than 1,200 scientist-authored project ideas in more than 30 areas of science. Most of these project ideas offer background information to help kickstart a student's research and a full experimental procedure that has been tested and reviewed by a team of scientists.
  3. Hook into student interests. A student who does a project that fits in with an existing area of interest is far more likely to enjoy the science project process than a student who picks a project because it fits a parent's area of expertise or somehow fits what a parent thinks a science project "should be." This doesn't mean that your student needs to know if she is interested in biotechnology or aerodynamics. If she knows that, great. But if she doesn't, what are her hobbies? What does she like to do in her spare time? Are there issues she cares about?

    Finding a science project related to an interest may immediately set the stage for a more exciting and engaging science fair project. Not sure where to look? The Topic Selection Wizard at Science Buddies helps match students to projects they may really enjoy—even in areas of science they might not have initially considered. Respond to a few simple statements that help the Wizard better understand your interests, and the Wizard will show you a set of projects that you might like. From video gaming to sports to robotics and zoology, there are great student projects in every area of science.

  4. Think beyond the box about what qualifies as a science fair project. Your student is not limited to doing the same project everyone else does, the same project an afterschool program demonstrated, or the same project you remember from your own science class. There are an infinite number of possible questions your student might ask and around which a science project may be built. Students are not limited to exploding volcanoes or seeing whether plants grow better with this liquid or that one. Here are a few examples of great science projects that might not sound like what you expect:

    Those are just a few of the many, many projects that students might choose, projects that sound like a whole lot of fun!

  5. Pick a project that fits with the student's grade level/experience. Not every science fair project will results in a Nobel Prize-worthy conclusion or data set. School science projects are not supposed to be equivalent to what adult scientists are doing in the field or in research labs. Instead, a student's science project gives the student the chance to enact the scientific or engineering method and answer a science question. What is learned or observed by the student may be something small, but the student will have learned by doing, by putting the question to the test and gathering and analyzing data. Picking a project that is too hard is certain to cause problems, and choosing a project that is too simplistic for your student will not challenge her to really dig in and get involved in the process and project.
  6. Understand the role of the parent and the role of the student in the science project process. Your student's science project should not be your own project. Depending on your student's grade and age, you may need to be more or less involved in helping your student facilitate the experiment. But if an appropriate project is selected, your student should be able to work through the steps on her own. Your student needs to come up with the hypothesis (her words, not yours). Your student needs to decide what the project display board looks like and how the information gets presented. Your role may be that of driver (to the library) or buyer (materials, glue, and a project display board). Or maybe your role is to help your student talk out loud about what is happening in the project so that she is better able to understand and articulate what she observes, what problems she encounters, what questions she has, how her variables are related, or what else she may need to do in developing her procedure or analyzing her data. (For more information, see How to Help Your Science Student.)
  7. Review the basic steps of the scientific method or engineering design process yourself. Your student should be learning and reviewing these steps in class, but refreshing your memory about what is involved will help you feel more confident about the step-wise approach that most projects follow. Bookmark the Science Buddies Project Guide. It is your friend.
  8. Remember that being "right" is not the goal. A science project may not turn out the way your student expects. A hypothesis may not turn out to be supported by the experiment. It may seem like exactly the opposite of what your student thought was going to happen happened. This doesn't mean the project failed. If your student worked through the appropriate steps and learned something by doing the experiment, then the project may, in fact, have been a success. Teachers look to see that students have used and understood the scientific steps, understand what they were testing and why, and understand what the data showed—even if it is different than what the hypothesis predicted. Do not think your student has failed if the project takes an unexpected turn!
  9. Go to the science fair. Make an effort to go to the science fair to see your student's project on display, one project display board among all the others, and to celebrate the hard work and learning that went on as part of the project. Everyone who completes a science fair project deserves recognition for participation!


Here's to Science Fair Project Success in Your House!

Share Science Buddies with your student's parents, with your friends, colleagues, and family. Science Buddies can make a difference in how students and families perceive the science fair project.

While your students finish preparing their science fair projects for this year, I may work on a few project display boards of my own. As the "turmoil board" shows, you can certainly make a statement and communicate information about a project or a process using a project display board! That students learn to share their project results in this way is a great exercise at the end of the science project process!

Categories:

 

A Google hangout this week gives students and teachers a chance to find out more about space exploration and to talk with astronauts and leaders from Virgin Galactic about some of the many, many reasons "why" space science matters.


Milky Way photo; Golden State Star Party; 2010
Photo: Kenneth Hess, Golden State Star Party, 2010.

Do you look up at the night sky and see, simply, the stars, the imaginary outlines that link stars to form constellations, the blinking lights of planes as they pass, bright speck of Venus, the shifting clouds on the moon making the face in the moon that appears in children's stories? Do you look up, and see the brave new frontier heralded, traveled, explored, and inhabited in popular television series like "Star Trek," "Dr. Who," and "Firefly"? Or maybe you look up and see something in between.

Maybe you hope to be an astronaut, or maybe you are just curious about what potential exists beyond our atmosphere. Maybe when you look at a photo from the Hubble Space Telescope, you realize that every one of the dots you see, really, is a galaxy or a cluster of galaxies. Maybe you contemplate that reality, and your head spins, just a bit, and you think, too, of the Milky Way and that, in fact, our spinning-armed galaxy is just a dot in the vastness of space. Maybe you are fascinated by photos from the International Space Station that show astronauts looking back at Earth, a completely different perspective on our planet.

In a TEDx talk in January, Will Pomerantz, a graduate of the International Space University and Vice President of Special Projects for Virgin Galactic, talked about space and the "why" of space exploration. "From Yuri Gagarin in April 1961 until today, 542 human beings have been in outer space," said Will. "And I can guarantee you that every one of those 542, plus all of the hard working men and women who have helped put them up there, all the people who work on the great robots like Mars Curiosity, like the Hubble Space Telescope, every single one of them has been asked at some point by a friend or by a loved one—'Why? Why is it worth it? Why do we go to outer space?'"

Maybe you have similar questions, questions about the time and money involved in space exploration, questions about what we can learn, as a society and as a planet, by exploring space, questions about how space exploration can make a difference in life on Earth.


Space Education, Hangout Style

Virgin Galactic, a sponsor of the 2014 Google Science Fair, is all set to answer questions about space exploration in an out-of-this-world Google hangout this week titled "Why Go to Space." Gavin Ovsak, a former Google Science Fair finalist, will lead the hangout and pass along questions submitted by the audience to Sam Branson and Will Pomerantz. Sam, already known for his adventures in the Arctic, and son of Virgin founder Richard Branson, is training to be part of Virgin Galactic's first commercial spaceflight scheduled for later this year. Together, Will and Sam will join forces at the hangout to answer questions about space travel and give you their perspective on "why" we should consider going to space—why we should consider continued space exploration important.

As Will puts it, there are an infinite number of possible answers to the question. "I don't think you can give the top 10 reasons why we go to space, because, after all, there are 7 billion of us" and who "knows how many planets and stars and reasons out there."

Drop by this week's hangout to hear what questions others have about space, to ask your own questions, to hear Sam and Will as they talk about some of the reasons "why," and to think about your own answer to the question: "Why go to space?"

The hangout will take place on February 28, 2014 at 18:00-18:30 GMT (1PM EST/10AM PST). To join the hangout, visit http://goo.gl/6ZpZMG.

Read more about this week's Virgin Galactic hangout in this article on the Virgin Galactic site.


Making Connections

Students interested in space exploration can explore relevant ideas and concepts in engaging astronomy science projects like these:

  • Dirty Snowballs: How a Comet's Size Affects How Fast It Melts: Comets are big lumps of rocks, ice, and frozen gases that orbit the Sun. The glowing tail behind a comet's nucleus is the visible sign that a comet is melting. Do big comets melt faster than small ones? In this science project, students model comets using ice forms and a hair dryer to explore the relationship between a comet's size and the rate of melting.
  • Catching Stardust: Astronomers design and build satellites to orbit a planet, moon, or comet and collect space particles, or "stardust." How many space particles are collected this way, and what variables increase or decrease a satellite's effectiveness in gathering stardust? In this science project, students build their own mini satellite and use it to collect pretend stellar debris. What difference does the orbit distance of the satellite from the object being observed make in terms of what is collected?
  • The Milky Way and Beyond: Globular Clusters: The color of a globular cluster gives clues about both the age and the contents of the cluster. When you look at the colors of the globular clusters in our galaxy and compare them to the colors of clusters in another galaxy, what kinds of conclusions might you draw?
  • Craters and Meteorites: The craters on the surface of the moon may resemble the holes in Swiss cheese, but what accounts for the differences in crater size? In this science project, even the youngest of students get hands-on exploring how impact craters are formed and why some are deep, some are shallow, and some are bigger than others. Does the size of a crater depend upon the size of the meteorite?
  • Asteroid Mining: Gold Rush in Space?: Could asteroid mining be the space equivalent of gold or coal mining? In this science project, students analyze data from the NASA's Jet Propulsion Laboratory Small-Body Database to develop their own business plan for a hypothetical asteroid mining company. Which asteroids should you target for an early asteroid mining mission?

  • NASA Asteroid Database: What Can You Learn About Our Solar System?: In addition to the well-known planets, moon, and sun, our solar system is filled with millions of asteroids. Agencies like NASA track asteroids, partly because of the risk of an asteroid collision with Earth. But asteroid data may also provide information about the history of our solar system and our future in space. In this science project, students explore NASA's Jet Propulsion Laboratory Small-Body Database and learn to work with "big data" as well as investigate what this data can tell us about our solar system.
  • The Measure of Mercury: Analyzing Impact Craters on the Innermost Planet: NASA spacecraft gather data that scientists then use to further explore and understand space. In this science project, students use data collected from NASA's MESSENGER mission to learn more about impact craters on Mercury. Using NASA data, students investigate the relationship between the depth and diameter of Mercury's impact craters.


Zero-G training for space flight
Above: Science Buddies President and Founder, Ken Hess (third from right) during a Zero-G training session in preparation for a future Virgin Galactic space flight.

Categories:

 

Seasons science / Earth Axis Science Experiment

In this week's spotlight: an astronomy project that lets students and families use a simple homemade setup to better understand the way the tilt of the Earth's axis causes seasons. When a surface is titled, how does the light reaching it change? With a flashlight, a cardboard box, and some ordinary paper, you can get hands-on and experiment!


Categories:

 

With open source software and guided directions from Science Buddies, students can explore the ways in which robotics engineers test designs before choosing which designs to prototype. This student put her own robots to the test—on her computer—and walked away with a blue ribbon at a local fair.

Student VoxCAD success story / 3D robotics student science

Students Exploring 3D Engineering

With computer-aided design and simulation software, students can begin exploring virtual design and engineering as early as elementary school.Have you experimented with 3D software for your science project, as part of your robotics team, or just for fun? We would love to hear and share your story! Email us at blog@sciencebuddies.org to let us know how you have started exploring 3D design and engineering!

With many schools offering extracurricular or after-school robotics clubs and programs, more and more students are exploring robotics engineering. Hands-on projects like building an ArtBot or BristleBot make it easy for families to tackle a robotics building activity at home with fairly easy-to-come-by supplies like toothbrush heads, coin cell batteries, and plastic cups.

While making a cute bot that shuttles about on toothbrush bristles can be empowering and rewarding for kids, designing effective robots involves more than just the mechanics of assembly. Being able to test different approaches to a robot design or its materials before investing time and money in building offers many advantages for engineers. If the goal is to create a robot creature that can move quickly from Point A to Point B, which design will work best?

Building three different working models, each with different approaches to mobility, is not always a practical approach given issues of time, materials, and money. If, instead, an engineer can do some preliminary testing and gauge the benefits or drawbacks of various design options, she may be able to save time and money and invest energy working on the design that shows the most promise for a given challenge or need. One approach to evaluating designs involves using computer software, like VoxCAD, to simulate various designs and conditions. VoxCAD is an open source, cross-platform physics simulation tool originally developed by Jonathan Hiller in the Creative Machines Lab at Cornell University.

In the field, using simulation software can be an important pre-build and testing step for robotics engineers. In the classroom, simulation software allows students to explore robotics without prior engineering experience. With a suite of VoxCAD Project Ideas at Science Buddies, students can experiment with robotics engineering at the virtual level, no circuits, batteries, or soldering required.

"The neat thing about VoxCAD is that kids can jump straight in to the deep end," says Dr. Sandra Slutz, Lead Staff Scientist at Science Buddies. "It takes a lot of mechanical engineering, electronics, and even programming know-how to create robots with different mobility strategies, but using VoxCAD, a student whose curiosity is sparked can start designing those robots in just a few minutes without all the time it takes to develop those skills."

With robotics simulation, exploring robotics and comparing designs doesn't require building multiple robots. Instead, students can get started right at their computers. After mocking up, visualizing, and testing their three dimensional ideas using VoxCAD, students who want to learn more about hands-on robotics engineering can explore circuit-based robot building projects in the robotics area at Science Buddies and move from virtual to real-world robotics design, building, and engineering.


Thinking 3D: Student Robotics

Laura was in 4th grade when her mom showed her a new VoxCAD project at Science Buddies. Laura, who wants to be a website developer in the future, was fascinated by the idea of designing three-dimensional robots and decided to give the introductory "Robot Race! Use a Computer to Design, Simulate, & Race Robots with VoxCAD" project a try.

"My mom showed me a VoxCAD video, and I became attached," says Laura. "I liked the way the creatures moved. I thought that was very interesting that the computer was able to bring them to life. And I wanted to learn how to do that."

When her mom told her about VoxCAD, Laura didn't have a science project assignment due. She chose to experiment with VoxCAD on her own. "I just thought it looked fun and wanted to try it," says the budding engineer, noting that robotics engineering wasn't an area of science she was already interested in or had explored before.

Laura enjoyed working with VoxCAD and trying different robot designs. In a video she created to accompany her project, Laura describes the movement of each design as the three-dimensional block-based robots move around on screen. She refers to the three models she created and tested as the "fastman snail," the "shimmier," and the "sidewinder," and her testing shows clear differences in the effectiveness of each. Using VoxCAD, she was able to bring the three robot designs to life on the screen and put them in motion to see how they would move and which would move farthest.

Voxcad Screenshot
Above: a screenshot from Laura's VoxCAD project that shows her three robot designs after time has elapsed.


The best part of the experience, says Laura, was watching her creations move in the VoxCAD Physics Sandbox. "I learned to think in 3D," she adds. After finishing her project, Laura entered it in the science division of the Alameda County Fair where she won a first prize blue ribbon.

Congratulations to Laura!


Further Exploration

To learn more about VoxCAD and to experiment with your own three-dimensional robot design and testing, see the following Project Ideas:

For suggestions about family robotics projects and activities and ways to engage your students with introductory robotics exploration, see: Bot Building for Kids and Their Parents: Celebrating Student Robotics, Create a Carnival of Robot Critters this Summer, Robot Engineering: Tapping the Artist within the Bot, and Family Robotics: Toothbrush Bots that Follow the Light.


Today, February 20, 2014 is Girl Day, part of Engineers Week. Don't miss the chance to make a difference in a student's life and future by taking the opportunity to introduce students to the world of engineering today and every day.

Categories:

 

LEGO Movie Makes Engineering Awesome


The LEGO® Movie puts engineering on the big screen in the hands of an assortment of plastic master builders and superheroes from various time periods and realms who come together to challenge Lord Business and the superior threat of Kragle. What they engineer in their quest to stop the Kragle will inspire students, teachers, and parents. If you aren't singing the awesome virtues of engineering yet, you should be!

LEGO Movie downloadable social media cover from official site
Note: You can find out more about the movie and watch video trailers on the official LEGO Movie site or on the LEGO site.


If you've seen the LEGO® Movie, then you know, "Everything is awesome. Everything is cool when you're part of a team." And, maybe... everything is awesome when you trust yourself, build what you want, imagine what isn't already written in a manual, and see yourself as special.

With Engineers Week this week, the timing for the smash LEGO Movie feels pretty, well, awesome. The importance of strengthening and encouraging science, technology, engineering, and math (STEM) education for K-12 students is an important topic of discussion, and on the heels of the great GoldieBlox ad during last month's Super Bowl game, a movie devoted to highlighting what is possible when you celebrate and combine ingenuity, innovation, and the spirit of engineering has all the makings of a blockbuster.

No matter what angle you approach it from, there is something to like in the LEGO Movie, even if a toddler seated behind you stands up the entire movie with his face wedged on the back edge of your seat and babbles throughout. There is something to like even if you think you have a toe a bit too far into teenhood to still play with LEGO. This is a feel-good movie that budding engineers, creative types, parents, kids, vehicle enthusiasts, and all fans of pink unicorn kitties are sure to enjoy.

Maybe you really love the fact that the first master builder who whirls into quick-as-a-flash building view is Wyldstyle, aka Lucy, a perfect big screen moment for inspiring and applauding girls interested in STEM. Maybe you love Batman's wry persona and his comment about building only in black, and sometimes a very, very dark grey. Maybe you like Emmet's morning routines, all by the instruction manual, including some pretty fierce jumping jacks. Maybe you really liked the appearance of a floating, dangling, glowing-eyed, Ghost Vitruvious. Maybe you really liked Benny the astronaut who can snap together a space ship out of whatever parts are on hand. Depending on where you live (or in which realm), maybe you chuckled over the overpriced coffee.

Or maybe you liked the aha moment when you finally realized what the "piece of resistance" really is in the context of the story.

The movie is full of great moments that may strike a chord with viewers of all ages in ways both obvious and subtle. As a parent, I liked the movie on many levels. We have zillions of bricks in the house from years gone by, and I fondly remember our days of "instruction manual" building as well as our days of free-form building. I loved the way master builders in the movie looked around at piles of bricks and pieces and saw, instantly, the different kinds of elements they needed, complete with the LEGO part ID numbers.

Watching the master builders in the movie quickly assess the problem, the moment, the dire necessity, and whip up something amazing from salvaged and reclaimed bricks was very cool. But Emmet's solution for the broken wheel axle during an early wagon escape scene was also right on track for the way engineers think on their feet (or with their heads) as they create and innovate needed solutions. His double-decker couch may have inspired some laughter, but in the end, it helped Emmet and a core group of characters escape, its real functionality emerging as an accidental discovery—something that happens in science and engineering all the time!

Ultimately, throughout the movie, viewers see the engineering design process in action. Things are built and rebuilt over and over and over again—with or without a manual. Engineering is fun and awesome.


Making Connections

If the movie inspired you and your kids and made you think about the buckets, bins, and baskets of LEGO bricks that have wound their way into the basement or storage or a closet, pull them out again and see what happens when you encourage your kids to take a fresh look and think and build beyond the instruction booklet.

The following science project ideas can be turned on their heads to give students new building experiences and challenges:

  • Building the Tallest Tower: this one is a vertical exploration, but what happens if you change the orientation? Or, by all means, build up! What do you need to do to keep climbing higher?
  • Mixing Mystery: Why Does Tumbling Sometimes Separate Mixtures?: use LEGO to build a science tool that can help sort out a mixture. If you love the kinds of ideas you find in a Lego Crazy Action Contraptions-style book, this one might be right up your alley!
  • Gears-Go-Round!: working with gears and understanding the relationship between the number of teeth and a gear's functionality will help students refine their building skills and strengthen their "how will this connect with that" know-how. What are all the ways you can reuse the collection of gears you have?

If your older kids are using LEGO Mindstorms, don't miss the great array of Mindstorms projects in the robotics area at Science Buddies.

Follow these, as written, or use the ideas as starting points for launching your own building projects and engineering or robotics investigations:

(These projects work with older Mindstorms kits or the new EV3 model.)

What you build will be awesome—because you build it!


Science on the Dark Side

Did the Kragle in the movie make your brain buzz? Did you spot the scene at the end where the humans are un-gluing structures that had been super-glued in perfect place? Did you cringe at the sad moment when Good Cop, Bad Cop's good face was wiped clean?

These moments invite all kinds of science questions about glues, adhesives, and solvents. Get started!

LEGO Movie - What will you create, build, engineer, innovate? Get started with Science Buddies

Categories:

 

What can engineers learn from studying the ways in which bugs and insects move? A great deal! Robotics labs like the Harvard Microrobotics Lab are using bio-inspired research and observation to design and test new approaches to designing and building small robots. Meet a female engineer working in the lab. She may not be keen on bees, but when it comes to coin-sized bots, she is excited by the challenge of taking what insects already do well and creating better, faster, and more efficient microrobots.

Dani Robotics Engineer
Above: Dani Ithier, Harvard student and engineer in the Harvard Microrobotics Lab

Flying Smart with Butterfly Wings

Dani's lab is using bio-inspired research to further robotics design and engineering, but other fields, too, study bio-systems to help improve existing systems, technologies, and understanding.

In the "Butterfly Wings: Using Nature to Learn About Flight" aerodynamics project, students make model butterflies to explore how changes in the angle of a butterfly's wing, relative to the wind, changes the lift force of the wing. Insect-inspired research may inform robotics design, but as this project shows, this research can also help address science questions and improve designs in other areas!

Like many kids, Dani Ithier grew up interested in building things. Popular engineering-inspired building and construction systems like LEGO are often a child's first introduction to the world of engineering. These systems provide an accessible, colorful, fun, and extensible platform that invites kids to explore engineering design and encourages troubleshooting and a step-by-step approach—for fun.

Kids who grow up building and tinkering grow up loosely using and enacting principles of the engineering design process. While these systems play a key role in facilitating childhood creativity and innovation, many kids outgrow their interest, snap-together building blocks and circuit kits being replaced by other activities and hobbies. For girls, the drop-off rate in interest in engineering toys may be even more dramatic.

Luckily, there are female engineers like Dani whose interest never wanes. She started out building, and she hasn't stopped yet.


Supporting Student Engineers

Thanks to support from her family, Dani's childhood passion was nurtured and encouraged. Today, she is applying, exploring, and expanding her interest as part of her undergraduate studies at Harvard where she works in the Harvard Microrobotics Lab, an electronics and robotics lab that specializes in research related to microrobots inspired by real-world bugs and insects.

"Growing up, support from family, friends, and teachers really helped me get more involved and excited about engineering and math and science in general," says Dani. "I had always been interested in building things, and my family encouraged me to do so despite the fact that they had no engineering or technical knowledge. They would buy kits for me where I would get to build model engines or play with magnets and circuits, and my uncle would hang out with me on weekends and teach me how to use power tools." In addition to lots of great engineering projects and kits at home, Dani participated in summer programs that let her continue to explore engineering and robotics.

At school, Dani says her teachers helped encourage and feed her interests by giving her extra challenges to work on, by helping as mentors in the after-school robotics program, and by making her aware of opportunities like the BAE System's Women in Technology Program. Dani was fortunate to have strong support, support that extended beyond the boundaries of in-class curriculum. "These opportunities helped compensate for what I saw as a lack of hands-on [science and engineering] activities in classes at school," she recalls. "We had lab periods in school and did several projects, but not nearly the amount I would have hoped for. I think it was really important for me to work on projects out of class to help me learn."


Making Room for Girls in Robotics

Programs and clubs like FIRST® robotics are often integral for students like Dani and help support the engineering spirit during middle and high school years. Dani recalls doing summer programs devoted to LEGO® Mindstorms, but she cites her participation in FIRST robotics as a powerful force in her development as a young engineer. As a young woman, however, her four years in robotics club also highlighted the disproportionate number of girls pursuing engineering by the time high school rolls around.

"There were very few girls on the robotics team I participated on in high school," admits Dani. "Over my four years on the team, only a handful of us actually participated in designing and building the robot." Though she categorizes the gender imbalance as discouraging, her team was fortunate to have a female mentor, which gave her and other teammates a role model and source of inspiration. Even so, "I do wish more women were encouraged to be involved in the sciences and join teams like robotics teams," says Dani.

The relationship between gender and engineering that Dani saw play out in robotics club is something she has continued to see in her college studies. "By looking at the demographics of the classes I'm in, the professors I've had, and the make-up of the engineering-related extracurriculars I'm involved in, I do feel like robotics and mechanical engineering are male-dominated fields. Often, I am one of the few women and people of color in these spaces."

Dani working in HAMR robotics lab
Above: Dani at work filming robotics testing in the lab—under very bright light conditions!

Microrobots to the Rescue

The miniature robots being built and tested in the lab may be used in a range of current and future applications. Search and rescue and exploration of environments unsafe for humans are areas Dani notes are particularly relevant to her lab's research.

"Many lives could be saved in the future," says Dani by way of example, "if, instead of sending humans into dangerous places, such as toxic areas or debris-ridden buildings after natural disasters, robotic bugs were sent instead!"

Students can explore robotics with a search-and-rescue mission in the "Robots to the Rescue! Build & Test a Search-and-Rescue Robot" Project Idea. The robot in the project involves a toy radio-controlled car, so it is many times larger than Dani's robots in the Microrobotics Lab, but the Project Idea lets students get started thinking about and testing important issues related to using robots in this way.

Given the numbers, finding female mentors and teachers becomes even more important for young female engineers. "I have found numerous amazing mentors I identify with who have advised me and made my experiences much more positive," says Dani. She also says she feels like she is seeing a change, an upward trend in the number of girls who are interested in engineering fields. This may be due to increased attention to science, technology, engineering, and math (STEM) education and, specifically, the desire to engage more girls in STEM.

"While things are getting better, I think these fields have a long way to come in terms of gender, racial, and class balance and that awareness of this and outreach are important steps to start changing this."


Inspired by Insects

Dani isn't a fan of cockroaches or bees and says she really would not want to work on projects that involve handling or close observation of either. But, in fact, Dani's work at Harvard centers on the design and development of robotic insects, robots inspired by the biology of other creatures. "Our lab models much of our work off of organisms and structures that already exist in nature. Why try to recreate the wheel when you can look at something that works amazingly (which so many things in nature already do) and mimic it to obtain good results," Dani explains. "Plus, it's fun to work with bugs and try to learn from them!"

Taking their cue from nature, Dani explains that research teams in the lab are working on both flapping-wing and ambulatory microrobots—bugs that fly and bugs that crawl. Both approaches to mobilizing a robot have different challenges. "Because both types are on extremely small scales (about the size of a quarter or smaller), mass is a huge issue," says Dani.

"Ambulatory robots need to remain light so that their transmissions are able to provide enough force for the robot's legs to lift the body's mass," explains Dani. "Flapping-wing robots need to remain even lighter so that they are still able to fly. This makes it difficult to put power supplies on board (batteries are heavy!)." Flapping-wing robots also present challenges for navigation and orientation systems, notes Dani. Flying bots have "lots of complicated control and sensor challenges because the robot needs to know its orientation in air so that it can continue flying under control."

Though cockroaches are not her thing, Dani has been working on a current version of the Harvard Ambulatory MicroRobot (HAMR) that models the design of a cockroach and is about the size of a quarter. Having worked on both ambulatory and flapping-wing robotics projects, Dani says she especially enjoys exploring the kinds of design issues and questions raised by ambulatory robots.

"I think I prefer ambulatory robots because I'm not particularly interested in fluid dynamics or control, which is what a lot of the work on flapping robots is. Rather, I like thinking about the dynamics and locomotion of ambulatory robots. For example, how does the leg gait affect how the robot moves, what kind of leg designs will allow the robot to climb walls, will changing leg materials increase speed?"

In addition to tackling challenges related to the physics and engineering of ambulatory microrobots, Dani says size is always an added variable and consideration. "It is hard to put things in the right place at that scale!"

The size may make building these robots a challenge, but it also makes things interesting when it comes to keeping track of them. With robots the size of a coin, it seems inevitable that they might wander or scuttle away, out of sight, or under something, never to be found again. But Dani says it hasn't happened. "Fortunately we have not lost any bots so far! It can be difficult though," she admits. But what do engineers do when things are difficult? They find solutions!

"With the ambulatory robots I'm currently working on, we put up little 'guard-rails' on the table that it walks on for experiments to make sure that it doesn't run off," explains Dani. "We also are pretty careful about keeping track of the robots when we are done using them and putting them in the drawer we keep them in."

To further help them keep track, Dani says the engineers give the robots names. "Currently we have Elle, Manny, and Actin."

Once they have a name, they are less likely to get overlooked during a daily robot roll call!

HAMR Micro Robots
Above: samples from HAMR research and development. Image: Courtesy, Harvard Microrobotics Laboratory. To see HAMR robots in action, watch this video.


Supporting Student Interest in Engineering, Robotics, and Computer Science

February 16-24, 2014 is Engineers Week, and February 20 is Girl Day (formerly "Introduce a Girl to Engineering Day").

Help excite your students—male and female—about engineering and introduce them to what engineering means and what engineers do. Students like Dani are quick to credit the support of teachers, family, and programs that help enable student exploration. The following resources contain ideas, projects, and links that can help kickstart student interest and exploration—you don't have to be an engineer, a programmer, or a robot designer to help your students pursue their own interest!



Science Buddies Project Ideas in Robotics are supported by Symantec.

Motorola Solutions Foundation, a sponsor of Engineers Week, is a supporting sponsor of Science Buddies.

Categories:

 

February brings us both Valentine's Day and heart awareness month. That's two great reasons to take a closer look at the hard-working muscle thump-thump-thumping in your chest!

Heart Science Valentines Science

A Day in the Life of Your Heart

Your heart is constantly thump, thump, thumping away, working hard to keep oxygenated blood pumping through your system. But your heart patterns change throughout the day, speeding up and slowing down in response to your activities, moods, and routines.

In the "A Day in the Life" hands-on science project, students track their own pulse throughout the day, getting a visual look at how heart rate varies at different times of the day. Over a span of days, what trends might you spot and what conclusions can you draw about the way your heart works?

Here's a subject that will really get your blood pumping: the human heart. Did you know that an electric current generated by your body causes your heart to contract over and over again—2.5 billion times during the average life span? This contracting motion keeps your oxygen-rich blood circulating to every corner of your body.


Matters of the Heart

While Valentine's Day might have you thinking about hearts of the sweet variety, there are many interesting reasons to learn about the science of your own heart. We've gathered a few ideas below to get you started.

Ending on a Sweet Note

Because chocolate and Valentine's Day go hand-in-hand, here are two projects related to the science of sweets:


Show Your Heart Some Love

Your heart is an amazing part of your body, so keep it healthy by exercising, eating right, and not smoking. It will pay off in spades!

Categories:

 

Heart science / Valentines Day Science

In this week's spotlight: a human biology and health project that puts an important question to the test: if you exercise regularly, does your heart recover from exertion more quickly than if you don't exercise often? The heart pumps faster during exercise, which helps to keep the heart healthy. It is good to exercise frequently and to raise your heart rate into its target heart rate zone during exercise, but how long does it take for the heart to return to its normal rate after you are done and cooling down from a workout? How does this recovery time differ between athletes and non-athletes? Put these health questions to the test with family and friends to find out!


Categories:

 

A car museum turned into a tragic no parking zone this week when a sinkhole opened up, wiping out a fleet of prized automobiles. Sinkholes apparently have no regard for the caliber of car or building that may be sitting on the surface, but what happens below the surface to account for sudden and catastrophic openings? With hands-on science projects sponsored by Chevron, students can experiment to learn more.

2014 Sinkhole at Corvette Museum
Above: A set of corvettes in KY disappeared this week in a sinkhole that left a massive 40-foot opening in the floor of a museum. Image: Courtesy of National Corvette Museum.

If you are a car aficionado, headline news today about the fate of eight cars in the National Corvette Museum in KY might make you cringe. A sinkhole appeared in part of the museum, reportedly swallowing a set of corvettes whole. Among the cars lost when the floor disappeared: a 1993 ZR-1 Spyder and a 1962 Black Corvette.

Whether you mourn the loss of the cars or not, sinkholes are scary. They are scary because they seemingly appear out of nowhere. The sinkhole that created an instant no-parking area at the museum is reportedly 40 feet wide and approximately 25 to 30 feet deep. What causes a section of ground cavernous enough to simply eat whatever was sitting on top of it to suddenly open up?


Sinkhole Geology

Sinkholes can be triggered by a number of different geologic processes, movements and reactions that are often unpredictable, unavoidable, invisible, and disastrous. In some cases, the reactions take years of time; in other cases, extreme conditions can create rapid change. As this video explains, earthquakes can trigger seemingly instantaneous sinkholes by causing temporary liquefaction of water-logged loose soil.

Liquefaction is one way a sinkhole may form, but other geologic processes contribute to and are responsible for sinkhole phenomena.

In the case of the missing corvettes, limestone may have something to do with what happened to the ground floor of the museum.


The Power of Water

Over time, the pH of water that runs over rocks can destabilize the structure of an area. We know that rocks are gradually eroded by many natural processes, but under certain conditions—and in the presence of specific kinds of liquids—some rocks actually dissolve and, ultimately, disappear. It may seem hard to believe that rocks that are big and hard can be conquered by simple, flowing liquids, but in the case of certain sedimentary rocks, that is exactly what happens.

Over time, or in the case of prolonged or extreme precipitation and flooding, water can build up in soil systems. In other cases, rocks are located in a place that receives frequent or periodic water. If the water is acidic, it may begin to destabilize the structure of rocks that contain carbonate compounds, rocks like limestone. The dissolution of rocks due to the pH of water can cause changes in the topography of an area, including sinkholes. (These changes are referred to as karst topography.)

Sinkholes may take years to silently form, or, they may appear suddenly, swallowing buildings, houses, trees—or even corvettes.

Note: Sinkholes propelled by pressure and resulting liquefaction may solidify again, cementing structures in the ground where they've been half-swallowed. Sinkholes created by erosion or dissolution of rock, on the other hand, won't suddenly seal back up as if the hole never happened. The hole becomes a new part of the topography of the landscape.


Making Connections

The corvette museum in Bowling Green, KY, is about thirty miles from the opening of Mammoth Cave, a system of more than 300 miles of mapped underground cave passages—caves full of limestone. The area surrounding Mammoth Cave is littered with visible sinkhole depressions and is referred to as the Sinkhole plain.

Students curious about sinkholes can experiment on a small-scale basis using the "Now You See It, Now You Don't! How Acidic Waters Make Rocks Disappear" Project Idea. In the project, students learn more about the ways in which acidic water conditions may appear and conduct a hands-on test to observe the impact of vinegar on limestone over time.

Students can explore related science in the "Factors that Affect the Transfer of Force through Saturated Soil" project.




Support for Geology resources and Project Ideas at Science Buddies is provided by Chevron.

Categories:

 

The Science of Winning Olympic Gold


Later this week, amazing athletes from around the world will converge on Sochi, Russia for the 22nd Olympic Winter Games. Beyond practice and determination, what affects a gold-medalist's performance? The answer is simple—lots and lots of science.

By Kim Mullin

2014-blog-winter-olymics-skiier.png
Image: Bode Miller, 2013 U.S. Ski Team training at Coronet Peak, New Zealand; Morgan McFie/Coronet Peak

Science at the Winter Games

No matter which Olympic sports are your favorite, there are science angles to explore. See what you can learn about your favorite sports when you ask questions about how the science behind the sport works.

What comes to mind when you think of the Winter Olympics? The sparkling skill of figure skaters, or perhaps the terrifying speed of downhill skiers? While skating and skiing get lots of attention, the Winter Olympics include more than a dozen different sports. Bobsledding, hockey, snowboarding, ski jumping, and yes, curling, are among the events that will be on display during the 2014 Olympic Winter Games in Sochi, Russia, February 7-23.

Olympic athletes dedicate countless hours to perfecting their skills and building their strength. By the time they make it to the Olympic games, you might say that they've got their craft down to a science! The truth is, scientific principles are behind all of the jumping, spinning, shooting, and sliding that they do.


Competition on Ice and Snow = Speed

As you watch the Olympics, expect to see hockey pucks flying over the ice at close to 100 mph, downhill skiers travelling 80+ mph, and bobsledders flying down their icy tracks much faster than we are allowed to drive on the freeway! Where does all of this speed come from? In part, it is due to the loss of friction we experience when we find ourselves on ice, or on snow with the right equipment. If you have ever slipped on a patch of ice (ouch!) or tried out a sled (wheeee!), you have experienced this loss of friction firsthand.


Spinning and Sliding and Jumping, Oh My!

But there is more to the Olympics than speed. The various games involve balance, aerodynamics, gravity, and many other ideas that you might hear about in a science classroom. While we can't all be Olympic athletes, we certainly can explore some of the forces that affect an athlete's performance. Here are a few ideas to get you started:

Where Science and Athletics Intersect

The Olympics offer a fun opportunity to cheer on amazing athletes. And as you enjoy the games, remember that from the physics of athletic performance to the materials science involved in creating and improving helmets, sleds, and aerodynamic suits, science is everywhere at the Olympics!




Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Time Warner Cable

Categories:

 

If you were watching the Super Bowl on Sunday with an eye especially tuned to the ads, you were not alone. Super Bowl Sunday is big business for advertisers. Chips. Beverages. Condiments. Cars. More cars. You might see ads for all of these in 30-90 second spots between turnovers. But this year, you also saw the promise and potential of a future generation of girl engineers.

Above: GoldieBlox's 2014 Super Bowl Sunday ad.

As a result of the "Small Business Big Game" contest sponsored by Intuit, GoldieBlox won an all-paid ticket this year to Super Bowl advertising history. The fledgling, Kickstarter-backed company scored big on Sunday as the first small business to have airtime during the Super Bowl. With a hefty price tag for a few seconds of face time with the millions of eyeballs glued to the set throughout the game and during the half-time show, Super Bowl Sunday tends to be an all-pro game. Like the Goldilocks character the company's name brings to mind, GoldieBlox got a chance yesterday to try out the big field and maybe make a game-changing play for girls and science, technology, engineering, and math (STEM).

"Construction toys get kids interested in math and science and help develop spatial skills," says Debbie Sterling, founder and CEO of GoldieBlox. "We don't have a national shortage of princesses," she continues, countering that "only 11% of engineers in the U.S. are women, and this is a problem." To tackle this shortage and the gender imbalance in STEM fields, and to make engineering something that isn't automatically perceived as a boy's club, GoldieBlox is setting out to show that girls are "more" than just princess material—and that princesses can, absolutely, be engineers.


Making the Play

Helping feed and enable girls' interest in engineering, the GoldieBlox line of integrated engineering and storytelling products aims to inject the princess aisle in the toy store with a much-needed boost of STEM. But GoldieBlox's Super Bowl ad didn't really focus on their product. The girls in the ad are not sitting around after having a miniature tea party with a bunch of stuffed animals and building pastel-colored dioramas or dollhouse furniture. Instead, to the beat of a Quiet Riot parody, the girls build a rocket and blast a bunch of their "girly" toys (including a bunch of stuffed animals) to space (or at least "out of the park").

The thirty-second ad is largely conceptual, but the engineering is there, as are the GoldieBlox components. To get a toy rocking horse out of an upstairs window, a few girls use an ingenious pulley system. Take a closer look. Pause the video at about three seconds. What do you see? The girls have rigged a purple bicycle as part of their system. Next up, girls attach a skateboard to a bike to help them move an oversized dollhouse as they run and ride to the rendezvous point with masses of other girls (all with their own toys) singing "Come on ditch your toys. Girls make some noise. More than pink, pink, pink, we want to think."

In the final seconds of the ad, the rocket is blasted into space by a girl who, from a safe distance away (smart!), uses a plunger-style mechanism built from GoldieBlox elements to initiate liftoff. It's a great, if fleeting, integration of the product in the commercial.

What's going on between the lines of the ad? The girls' parody of Quiet Riot's lyrics help spell it out, but you don't have to look far into the commercial to realize there are no adults on hand helping pull off this goodbye party, rocket building, and launch. You don't have to dig too deep to see what they are putting on that rocket and casting aside. These girls combined mechanical and engineering skills with innovation and creativity to make a bold statement about what they are being "given" and what they "want."


Another Classic GoldieBlox Video

A GoldieBlox video last year used a parody of a Beastie Boys song as backtrack for a group of girls who, bored with the TV lineup and a room of pink toys, design, build, and activate an amazing Rube Goldberg contraption. The video has since been edited to remove the backtrack, but even without a modern spin on the Beastie Boys' "Girls," the video is a compelling look at the issue of toys and entertainment marketed to girls, and the ways in which engineering is presented (or not) for girls starting at a young age.



Above: a previous GoldieBlox video that made the rounds on the Internet.


Engineering for Fun

A Rube Goldberg machine is a machine that is designed to do a simple task, but it does so through a series of complicated, interrelated, and interdependent movements and exchanges between ordinary objects. The classic Mouse Trap game is a familiar example of a very simple (and contained) Rube Goldberg-style machine. This Wikipedia description of the "mouse trap" in the game walks through the steps of the chain reaction. If all goes as planned,

"the player turns the crank, which rotates a vertical gear, connected to a horizontal gear. As that gear turns, it pushes an elastic-loaded lever until it snaps back in place, hitting a swinging boot. This causes the boot to kick over a bucket, sending a marble down a zig-zagging incline (the "rickety stairs") which feeds into a chute. This leads the marble to hit a vertical pole, at the top of which is an open hand, palm-up, which is supporting [another marble]. The movement of the pole knocks the ball free to fall through a hole in its platform into a bathtub, and then through a hole in the tub onto one end of a seesaw. This launches a diver on the other end into a tub which is on the same base as the barbed pole supporting the mouse cage. The movement of the tub shakes the cage free from the top of the pole and allows it to fall."

If everything works correctly, if the contraption is set right and operates without any unexpected hiccups or misfires, the mouse is trapped in the cage, and the player who triggered the "mouse trap" machine wins. In the GoldieBlox video, the girls start out staring at a swathe of pink programming on TV. Frustrated, they get out their tools, and they take care of business. They create a machine to turn off the TV. They don't just get up, walk the few feet to the TV, and press the knob. Instead, they turn their "need" into an opportunity to innovate, engineer, build, and have fun.


Put it in Action

If you saw Sunday's GoldieBlox ad—with or without your kids—and you got inspired about girls and engineering, then it's time to get creative! As the earlier video shows, there is a lot of brilliant engineering at play in a fun and unexpected Rube Goldberg machine built from ordinary materials. Build a machine with your kids? Or suggest that they design one? Exactly!

A Rube Goldberg design can be amazingly complex in design, timing, and detail, but it is a simple machine made of many individual parts. Watching one play out can be inspiring and exciting, but can you and your kids make one? You and your students? You? Yes!

To learn more about the engineering and science involved in a Rube Goldberg design, check the following projects:


The above projects won't walk you through setting up a specific Rube Goldberg machine, but they do, taken together, offer insight into the toolbox of engineering and science principles needed to design a successful, jaw-dropping, high-five-worthy chain reaction. The more you know about simple machines, gears, torque, trajectory, force, potential and kinetic energy, gravity, pull-back and launch angles, velocity, and motion, the better you will be able to design, troubleshoot, and engineer your contraption.

Engineer and Innovator's Tools, Toolbox, and Principles of Mechanical Engineering and Science


To get started, figure out what you want to accomplish, and then start scavenging materials from around the house (be sure to check the toy box and the junk drawer). Pool together as many items as you can that might help you move your chain reaction from start to end point. Then start hooking them together in a series of reactions.

We would love to see what you come up with!


More Girls and STEM from the Science Buddies Blog


Stay tuned! Introduce a Girl to Engineering day is coming up, February 20, 2014, part of DiscoverE's Engineers Week.




Motorola Solutions Foundation is a supporting sponsor of Science Buddies.


Motorola Solutions Foundation

Categories:

 

Video and Computer Game Pixel Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a video and computer games project and family activity that lets you investigate how the number of pixels used to create a video game object determines how it will look in the game. If you compare older games to new ones, you probably see a big difference in how the characters look today. Which look better? Do you know why? The number of pixels used in creating the images has a lot to do with the differences you see. In this family science activity, you can get create your own video game characters and experiment to see how much detail an image has (and how it looks) at 8 pixels, 16, 32, or even more. What happens as you increase the pixels? Put it to the test with your own graph-paper drawings!

Categories:

 

Super Bowl Sunday and Science on the Field


Before or after the big game, tune in for great hands-on sports science ideas that help turn an interest in football into an exciting science experiment. No matter who wins on Sunday, science will be part of every play, run, fumble, kick, and score. You just have to know where to look.

Football catapult field goal experiment with Science Buddies Store catapult kit

To Kick or Not to Kick

Not every field goal attempt will score. There are many variables that come into play when the kick team comes onto the field, including distance and wind. Knowing when to kick may be as important as having a perfect kick trajectory. A recent post-game headline about the San Francisco 49ers vs. Seattle Seahawks American Football Conference (AFC) playoff reads: "Kicker helped Seahawks reach Super Bowl by not attempting field goal.". That's right—he gets a thumbs up for knowing when not to kick. In this case, the wind was the defining issue for the kicker. If the wind hadn't been an issue, would the 53-yard kick have been in the bag? What's the average yardage for a successful field goal kick?

With a cool catapult kit (available from the Science Buddies Store), students can put the question of distance and field goal kicking to a fun indoor simulation in the "Field Goal! The Science Behind a Perfect Football Kick" science project. With some creative thinking, students can introduce some simulated wind into the equation, too. When wind is added to the variable of distance, do the percentages of successful kicks and go-for-it distances change?

Tip: The ping pong catapult can be used for a number of other hands-on science projects, from a medieval-inspired catapult exploration to baseball batting!

Football fans are gearing up for this week's NFL Super Bowl XLVIII (that's 48!) showdown between the Seattle Seahawks and the Denver Broncos. A season of Sunday- and Monday-night games have led to this final match, and millions will be tuning in to see who comes out on top and goes home with this year's title. (A reported 111.3 million people tuned in to the 2012 Super Bowl!)

Whether your favorite team made it to the final two or not, most likely you've got a new favorite for Sunday's game. Sports media coverage, including the official Super Bowl site, is full of catch phrases and headlines like this one describing the coming face-off between this year's best offensive and best defensive teams: "Irresistible force vs. Immovable object." This sentiment is echoed in a column in the Los Angeles Times by Gary Davenport, who writes: "On paper, the matchup is a football fan's dream. Strength on strength. The unstoppable force versus the immovable object. Peyton Manning and Denver's record-setting offense against the Seattle Seahawks and the NFL's stingiest defense."

Unstoppable? Irresistible? Immovable? Strength? Force?

If these descriptions sound like a physics or math project in the making, you are definitely in the right end zone! There is all kinds of sports science involved in how teams play, what passes are caught, and what field goal kicks clear the goal posts. The more you understand the science going on in the game, the better you can understand what's happening on the field, what plays may have game-changing potential, and what the outcome may be.

Here are a few football science project ideas to get you thinking about various angles, trajectories, energy transfers, and variables that will be on the field come Sunday:

  • Football Field Goals: Going the Distance: the distance of a field goal kick attempt has a lot to do with the chance of scoring. Head to the field and explore in this hands-on (or foot-on) science project. For a home stats activity, look up season stats on the two Super Bowl teams field goal attempts. See what the math reveals about the relationship between distance and success.
  • Field Goal! The Science Behind a Perfect Football Kick : in this exploration of distance and field goal kicking, students use a rubber-band catapult for a fun indoors football experiment.
  • Measuring Concussion Risk in Football and Other Contact Sports: tackles, sacks, and pile-ups are part of the game, but the level of impact in football often leads to injury, and some injuries may not be evident until after the game. In this project, students experiment with shock indicators mounted on helmets to explore the level of impact during a typical practice or game.
  • How Far Can You Throw (or Kick) a Ball?: a last second hail Mary pass can change the game, but the angle of the throw has a lot to do with how far it will go. Experiment with the relationship between angle and horizontal distance in throwing (or kicking) a football or another type of ball.


Big Game Weather

To the list of variables surrounding this year's Super Bowl, you also have to add weather. This year, in addition to season stats, like the fact that quarterback Peyton Manning heads into the Super Bowl with a record-setting 5,477 yards passed and 55 touchdowns, weather stats are making the news as the teams prepare to play at the MetLife Stadium in New Jersey. Already in 2014, New York and other East Coast states have hunkered under nearly a foot of snow dropped in a matter of hours, and a few weeks ago, stadium officials put their snow-removal skills and procedures to the test—a useful practice-run for the "what if" related to the upcoming game. Reportedly, NFL officials have already talked about contingency plans related to weather, including Super Bowl Sunday not being on a Sunday! See the Washington Post's "Super Bowl cold and snow: Big game history, local odds, and an early outlook" for a predictive look and some nice coverage of historical weather stats in relation to game day play.


Exploring the Science Behind the Sports You Love

Thank to Time Warner Cable's Connect A Million Minds program, Science Buddies continues to develop exciting sports science projects for hands-on student exploration. See also:



Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Time Warner Cable

Categories:

 

Electricity Science Project / Weekly Family Science Project Highlight

In this week's spotlight: an electricity project and family activity that takes the zap out of static electricity. What causes the buildup of static electricity and may cause you to get "shocked" when wearing, rubbing up against, or touching certain materials or objects? What does what the object is made of have to do with static electricity? In this project, you and your family can build a cool tool, an electroscope, to detect electric charges and test to see how different materials conduct electricity.

Categories:

 

mammalian biology puppy warmth science Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a mammalian biology project and family activity that encourages families to talk about and explore why puppies and other animals huddle together for warmth. Does cuddling up really increase warmth? Put it to the test in this hands-on science experiment!

Categories:

 

Stories about Mary Barra have the potential to empower, encourage, and inspire students of all ages as she takes on a very visible and important leadership role in the automotive industry. As Barra shows, even something as simple as making paper boats can make a difference in how students (or adults) perceive science and engineering—and maybe in how a company performs!

Mary Barra, GM Senior Vice President with students from Bates Academy
Mary Barra, new CEO of GM, leads the GM "A World in Motion" skimmer boat in Bates Academy student competition last year. Image: © General Motors.

The weeks leading up to the start of Mary Barra's reign as CEO of General Motors (GM) have sent ripples of excitement and inspiration through all kinds of media corners, from those who cover the glass ceiling, to those who see Barra's rise as a wonderful tribute to hard work and company loyalty, to those who simply love cars, to those who see in Barra a role model for female engineers and scientists of all ages. Indeed, since the December announcement that Barra would be handed the keys and become GM's new CEO upon the retirement of Dan Akerson this month, the media has been buzzing with stories about Barra, a Michigan native, who started at GM as a teenager, who really wanted a fancy sports car for her first car but bought something more practical in order to be able to afford college, and who has risen, quietly, to the top of a global auto manufacturing company that has been on a successful rebound since its financial troubles in 2009.

Though Barra has carefully sidestepped many gender-specific questions, it is clear that, just by being who she is and where she is, she is poised to become a powerful role model for young engineers, especially for young women. With the status of "girls in science, technology, engineering, and math" (STEM) frequently under the media microscope and a concern for teachers, parents, and community leaders, Barra's history, educational background, and new position in the world of automobile engineering offers a wonderful beacon of possibility. To girls who love cars, who love engineering, or who love any STEM subject that is frequently viewed as "for boys," Barra's story offers inspiration and a reminder that doing what you love is what matters.


The Engineering Design Process

In reports and interviews this week surrounding the Detroit Auto Show where she unveiled the 2015 GMC Canyon, Barra has talked about teamwork and about collaboration, ideals and practices that may prove to be cornerstones of her strategy leading GM. While these qualities could be highlighted to smooth the transition into her new role, it seems they are not new catchphrases for Barra but are, instead, central to her style, vision, and approach.

A team-building activity she spearheaded last year at GM showcases Barra's emphasis on teamwork, collaboration, and on the engineering design process—Barra orchestrated a "paper sailboat challenge" for more than 200 GM engineers and designers.

While team-building exercises and activities are common in big business, Barra's paper sailboat challenge stands out for its novelty, for the simplicity of getting everyone involved in doing something that might feel a bit silly but showcases the fun in the process, and for the simple fact that the event has its roots in an activity she did with third grade students as community outreach at a local school.

At Bates Academy in Detroit, Barra and other members of her team got hands-on with a group of students in a "skimmer" competition where they created boats and then raced them across hard floors (not water) using fans to simulate the necessary winds. This kind of community STEM event is wonderful for students and helps to show students that science, technology, math, and engineering can be fun, that the steps of the engineering design process are accessible, and that even small changes can bring innovation and, maybe, a winning new design—or the fastest skimmer.

We love the story of the paper sailboat challenge and its skimmer origins with Detroit students. We love the photos and video of Barra and her team working side-by-side with the kids. And who can help but love the "C'mon, mama needs a new pair of shoes!" comment from one of the enthusiastic participants?


Getting Involved

Creating opportunities for hands-on science and engineering at a local school is a great way to contribute to science education and to help show both girls and boys that science and engineering is fun, exciting, and offers many different paths for the future. If the story of Barra and her paper boats inspires you, and you are wondering how you might create a similar kind of activity either for students at a local school or with a group of kids at home, take a look at these hands-on science projects, all of which are ideas that could be transformed into a fun class or group activity or competition:

Prefer dry ground? There is no need to stop with boats. Paper airplanes, hovercraft, and marble runs make great hands-on engineering activities for students, too:


Real People, Real STEM Inspiration

For more stories about volunteers helping create hands-on science and engineering opportunities in classrooms, schools, and programs in their communities, and for additional stories about encouraging girls in STEM, see the following posts on the Science Buddies Blog:


More Information

To learn more about Mary Barra, see:

Categories:

 

Cellphone cameras do a great job of helping us capture funny and memorable moments that we can share through our favorite social media sites, text messages, or email. That same imaging technology can be used as the basis for useful medical and scientific tools—or just for fun at home-exploration.

color wheel
Image: Based on a figure from Martin Silberberg's Chemistry: The Molecular Nature of Matter and Change; McGraw-Hill, 2011.
In our last installment, we covered a DIY project for the tinkerer—turning a cellphone into a functional microscope. If you are looking for another science-inspired cellphone project or are curious about maximizing the value of a cellphone but prefer a bit less "tinkering" than the cellscope requires, consider using a cell phone as part of a homemade spectrophotometer.

The "See the Light by Making a Cell Phone Spectrophotometer" project guides students in constructing and using their own homemade spectrophotometer. This is a great hands-on project for an aspiring chemist or a photography enthusiast!


Creating a Home-size Model of Key Lab Equipment

A spectrophotometer is a piece of lab equipment that measures the intensity of light. Scientists use this expensive tool for a range of applications, including exploring how chemicals react, how quickly microorganisms multiply, and how much protein or DNA is present in a sample.

To understand how a spectrophotometer works, you will want to review how we "see" light, the relationship between visible light and electromagnetic radiation, and how the colors we see around us are related to varying wavelengths of visible light and the electromagnetic spectrum. (See the image at right to see a standard color wheel of primary and secondary colors annotated with typical wavelengths expressed in nanometers (nm).)

To measure the intensity of light, a spectrophotometer separates white light into a spectrum of colors as the light passes through a colored solution and measures the amount of light that comes out on the other side of the solution (light that isn't absorbed).

With a cellphone and some specialty items like an LED and a simple diffraction grating slide, you can create your own DIY apparatus to mimic the functionality of a spectrophotometer. Using your cellphone's camera to record the light that passes through a solution of colored liquid, you can then use computer-based spectrophotometry tools to analyze the images and evaluate light intensity.

Once you have your cellphone spectrophotometer working, you can experiment to find out ways to improve the quality of your images for more robust analysis. This is cool hands-on and applied science!


See Part 1 of our "Science-hack Your Phone" student science series...

Categories:

 

health exercise and sports sweaty science Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a sports science project and family activity that lets you experiment to find out how different activities affect your heart rate. Exercise is important, but do all forms of exercise make your heart work the same? Does your heart work as hard when you are walking as it does when you are jumping on a trampoline or playing a game of basketball? Which activities and exercises really get your heart going? What does it feel like when your heart starts working harder? Put these and other sports and health science questions to the test as a family science experiment!

Categories:

 

Cellphones do a great job of helping us capture funny and memorable moments that we can share through our favorite social media sites, text messages, and email. That same imaging technology can be used as a tool for medical and scientific field work—or just for fun at home or in the classroom with a stack of science slides. A homemade cellphone microscope brings small things into new focus! (Plus, it's super cool to say you turned a phone into a functional microscope!)

One more week of winter break? Is it feeling long? Have you tried out all the new video games, ripped all your new music, and found that your new headphones are comfortable 24/7? Being out of school may be fun, but the sprawl of days can start to lose its shine in the lag time before the big ball drops on New Year's Eve. What's next? What should you do?

There are an endless number of possible answers to the question. (See our suggestions for Winter Break list.) But here's a thought if you are tinker-inspired, medically-minded, globally-aware, or just like the idea of a project that will let you hack an electronic device without doing any long-term damage.

Did anyone in the house get a new phone for the holidays or in recent months? If so, is there an old phone lying around that you can co-opt in the name of science? (Hint: Check the spare parts and catch-all drawer in the kitchen, basement, or wherever it appears in your house. Old phones often migrate there.) Found one? Why not uplevel an old phone and turn it into a DIY piece of science equipment?


Making Medical Diagnostic Tools

Portable medical diagnostic tools have the potential to help improve health care around the world. If doctors and scientists can analyze specimens or samples in the field using something as ubiquitous as a cell phone, the chances of making critical evaluations and diagnoses increases. Remote and portable diagnostic tools may save lives and advance science.

Cellscope example, Eva Schmid

A Berkeley Lab and Cellscope Development

A research team at the Fletcher Lab at the University of California, Berkeley designed the original cellscope and has continued to expand development and prototyping to include new cellphone-based and portable tools that can do such targeted tasks as view the inner ear and look into the human eye. Learn more about the team's lineup of tools and their K-12 Explorer imaging iOS app on the CellScope site. On the CellScope site, you can also glimpse the LEGOScope, a LEGO-based version that integrates building blocks and still offers cellphone-based functionality.

(Image credit: Eva Schmid, CellScope site. Can you guess what is pictured?)

There are clear global implications for portable diagnostic tool research and development, and you can explore this area of engineering by turning an available cell phone into a cellscope, a microscope that takes advantage of your phone's imaging features and capabilities.

In the "Picture This: Building a Cell Phone Microscope" photography science project, students take what they know about how a compound microscope works and apply it to the construction of a cellphone-based microscope using a 1 millimeter (mm) glass ball lens as the "objective lens" and a paper towel roll cardboard tube as the basis for the stand. (Note: The lens for this project is a specialty item that may need to be ordered. See below for thoughts on how you might experiment with the materials.)

The build for this cellphone microscope is pretty straightforward. The challenge then is figuring out how to use it or how to improve it!


Enacting the Engineering Design Process

A basic cellphone microscope offers real-world functionality. But how can it be improved? In the Science Buddies procedure, you will need to order a specialty item for the lens. Are there alternatives to the glass ball that would make constructing a cellscope even easier and more affordable? This is the kind of questions researchers and engineers ask and explore during development, prototyping, and testing. To learn more about the Engineering Design Process, see this outline of the steps of the Engineering Method.


Putting a Cellphone Microscope to Use

Cholera and malaria are two examples of diseases portable microscopes can help scientists and doctors diagnose and identify in the field. What can you use your "cellscope" to zoom in on? With the information provided in the project and related resources, you can make your own slide sets to examine with your cellphone microscope.


Family Fun: Make a Game of It

Turn identifying a set of homemade slides into a puzzle for your family and friends. You create the mystery slides, and see if they can guess what they are looking at through your cellphone microscope! They will all be impressed with your microscope, and everyone may want to get in on the action creating slides, so be sure to have a few blanks on hand.

See Part 2 of our "Science-hack Your Phone" student science series!


Categories:

 

Food science kitchen chemistry cornbread baking Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a food science project and family activity that explores the role of baking powder in baking. In this pair of projects, experiment to see the affect of baking powder on corn bread muffins for a clear visual look at what happens when you use more or less in your recipe. Does a light and airy muffin indicate one with or without baking powder? How does the density or weight of a muffin change in relation to the amount of baking powder used? What happens if you use too much? Or not enough?

Categories:

 

As you prepare for winter break and lots of indoor time with your kids, consider scheduling some time for family science. We have suggestions for fun hands-on science and engineering activities you can do with your kids that might feel a lot like playing or crafting even though there is plenty of science at hand!


By this point in the year, you have hopefully nailed down any upcoming gift-giving moments and are ready to kick back with your kids, friends, and family and enjoy the final days of the calendar year. There are those who procrastinate, of course, and there are those who are still looking because they strive to find the most different, most educational, or most unexpected gift. To help those last-minute and discerning gift-givers, our staff has made lists in year's past of gifts they would like to receive from the Science Buddies Store and great "to do" gift ideas that are fun as a hands-on activity and as a science project. From tie-dye to a little light-sensitive grasshopper robot, there are all kinds of great science project materials and kits that you can feel good about giving.

Many of the kits in the Science Buddies Store would make an awesome gift for a young scientist or engineer!


Planning "To Do" Time

Last-minute gift buying and wrapping aside, many families are done with the flurry of holiday preparations and are looking ahead at the pending school break. There are a number of days to fill, and in many areas, cold weather may force everyone indoors for large chunks of time. What can you do to stave off kid cabin fever, keep everyone entertained, and have fun exploring something hands-on with your kids?

Winter break is a great time for family science and engineering. With the right projects and activities, you and your family can have a great time building, experimenting, and testing science questions together!

Consider these science- and engineering-based suggestions:

Passing Family Time with Simple Experiments that Use Everyday Materials

For easy-to-prepare and family-ready science experiments you can do with items around the house, consider these fun and creative options from our weekly family science activity spotlight:

We hope you have a great winter break with your kids—and plenty of time to explore something new together, to tinker, to play, to make, and to ask questions and seek answers through hands-on science!

Buying for a Specialist?

One of our staff scientists compiled a list of gift suggestions for biology enthusiasts. Check out her bio-inspired gift ideas in her "What to Buy the Burgeoning Biologist?" post on the Biology Bytes website.

Categories:

 

 Human Behavior Memory Mnemonics Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a human behavior science project and family activity that explores memory and how using a mnemonic device can help you remember a string of words or the items in a list. Have you ever used the HOMES acronym to help you remember the names of the Great Lakes or ROYGBIV (or Roy G. Biv) to remember the order of the seven colors in a rainbow? In this science project, you conduct a controlled experiment to see whether or not a mnemonic device makes a difference in how well your friends, family members, and other volunteers can remember the list you provide. Does a mnemonic aid work? What kind of mnemonic aid works best?

Categories:

 

Making it to the end zone on a last-second Hail Mary pass is one way to score in football, but when it's 4th and 30, a well-executed field goal for three points can be the game-tipping, winning play. What's the secret to a successful field goal? Thanks to support from Time Warner Cable, students can put the science and math involved in one aspect of field goal kicking to the test in a new Science Buddies sports science project that places a rubber-band catapult on the field as the team's football kicker. After seeing how your kicker does at varying distances, you can draw conclusions about when to call the kick team to the field.

Football catapult field goal experiment with Science Buddies Store catapult kit

Catapult Your Way to Better Football Strategy

With the brand new "Field Goal! The Science Behind a Perfect Football Kick" science project from the Sports Science Project Ideas area at Science Buddies, students can dig into the science of football kicking using an indoor rubber-band powered catapult in the role of kicker.

With the controlled setup, students can kick multiple times from varying distances to find out if distance is related to the percentage of field goals made. This is a great science project for a football enthusiast, but it is also a super science activity for casual home or after-school exploration!

The catapult kit for this project is available in the Science Buddies Store.

(Note: the catapult kit can be used for a number of other Science Buddies Project Ideas as well!)

Have you ever whiled away time with a triangular folded paper football that you and a friend shuffle with your fingertips back and forth, from edge to edge, across a table? When the football crosses the boundary of the edge without falling off the table, you score a touchdown and get to kick a field goal by resting the football on its point and flicking it through the air, across the table, and through the opposing team's finger goal posts.

Paper football is a classic, but perfecting the art of flicking a paper football with your thumb and forefinger won't necessarily translate to a better understanding of field football and how game-winning field goal kicking may depend on a number of scientific variables, including the trajectory of the kick, the way gravity plays upon the ball as it travels through the air, and how far away the kicker is from the goal posts.

Are the odds of making a field goal kick better if the kicker is closer to the end zone or farther away?

This is exactly the kind of question Time Warner Cable encourages students (and families) to explore through the Connect a Million Minds STEM in Sports area. Time Warner Cable has teamed up with Science Buddies to develop new science project ideas that help students turn interest in sports into exciting hands-on science projects.


An Indoor Football Sports Science Experiment

Paper football may not boost your football skills, but a fun hands-on science project might. Combine a rubber band-powered catapult kit from the Science Buddies Store with a homemade goal post and a few football-shaped party favors, and you have the makings of an end zone dance-worthy science project!

The new "Field Goal! The Science Behind a Perfect Football Kick" project from Science Buddies' Sports Science Project Ideas area guides students in an exciting sports science exploration that takes indoor paper football to the next level. Students will have a great time launching mini footballs through the air as they gather data for their science project. Once the official data is collected, it may be game on for students and a group of friends or family members with the catapult and goal setup!


Making Connections

After exploring the relationship between distance and kicking in the "Field Goal! The Science Behind a Perfect Football Kick" sports science project, you may approach your next game with a completely new perspective on when to kick and when to go for the first down on the ground. Whether you play football or just enjoy watching, math and science can help you narrow in on smart game strategies. Will your favorite team follow a strategy that lines up with the data from your science experiment? Keep track all season long and see how the numbers (and successful kicks) play out!


More Football Science

For more great football science projects, see these Science Buddies Project Ideas:

For additional information about the science behind football and other sports, visit the STEM in Sports section of Time Warner Cable's Connect a Million Minds site. Students, teachers, and families will find videos from favorite professional sports players like Victor Kruz and Magic Johnson, sport-specific learning guides, and more sports science resources.



Science Buddies' Sports Science Project Ideas are sponsored by Time Warner Cable.
Time Warner Cable

Categories:

 

Building light-tracking robots as a family activity lets you and your kids take next steps in electronics and circuitry!

Family Light-tracking robotics engineering project with toothbrush robots

My kids and I had a great time over the summer whetting our teeth on basic robotics and electronics by transforming toothbrushes into cute little Bristlebot robots that look and work very much like commercially-available nano or hex bugs. The basic Bristlebots robotics engineering project is a fun hands-on activity and one that works for a wide range of ages. You can read up on our experience and our nitty-gritty tips and insights after doing this family science activity (like using garden shears to snap of toothbrush heads) in the "Building Bristlebots: Basic Toothbrush Robotics" post.

For us, the basic Bristlebots were just a toe in the water. My plan, all along, was to build the much more sophisticated light-tracking bots with my kids, but I liked the fact that we could do the projects in sequence, thus building our skills and understanding of the principles involved. More sophisticated, of course, often translates to more complicated, and, indeed, the light-tracking bots project was a more challenging project. But, without a doubt it was also a more satisfying family project. We like a challenge!

Breadboard diagram for electronics engineering project

Meet Your Bread Board

The project at Science Buddies uses very clear and helpful diagrams like the one shown above to help guide students in placing their parts correctly.

Our red, green, and blue mini bread boards were super cute and cheerful, but only two of them had any numbers and letters printed on them, and one of them had the numbers and letters completely reversed from the diagrams in the project. The procedure at Science Buddies has since been updated to mention that breadboard layouts and on-board descriptors may vary, but it gave us something to talk about as we read through the directions and got ready to follow the steps of the procedure. Did it matter? Did we need to reverse the circuit diagrams on the one board? Tip: If your breadboard doesn't have the same (or any) numbers or letters, just follow the diagrams at Science Buddies so that your circuit visually matches the one shown in terms of placement for each element.

The basic Bristlebots are super cute, super easy, and fun to make, but with slightly older kids in the family science setting, the light-tracking bots proved an excellent choice for us. They take longer to build. They involve a circuit beyond just a battery and a motor. They have cool functionality that lets kids put their own or a parent's phone flashlight app to use. They can be used as the foundation for extending the project and learning opportunity by challenging kids to alter (or reverse) the functionality. And, maybe best of all, they sport a very handy on-off switch! Plus, they are very cute and have a lot of personality even in their barebones wires and parts. (Revving up the design once you get the bots working is not required but can add to the creative fun for kids who want to customize and personalize their bots.)


Cool Parts

I had never used a bread board when I ordered all my supplies for this project and then gathered the kids around the table a few days after we made our original Bristlebots. Doling out the required materials for three kids to work on building these little robots was exciting. There were lots and lots of resistors, three awesome kits of colorful jumper wires, photoresistors, MOSFETs, battery packs, switches, pancake batteries, and more. There was a lot going on, and we were excited to get started.

While I recommend doing this build start to finish, family science sometimes follows the stop-and-go patterns of daily life. We split our build into two sessions, working around an important game of laser tag. Before we got started, everyone read the full procedure, and then we were ready to get hands-on. We knew we were not going to finish in one sitting, but the kids worked through the first several steps of the procedure, enough to give me a sense of how well the kids were going to do with following the diagrams and pushing the small pieces into place. Tip: If you have to start, stop, and come back to finish, be sure you stop with everyone having completed the same step!

When we came back later, we picked back up where we left off.


Excellent Diagram-led Build

The procedure at Science Buddies for this project is excellent. The team did a great job guiding students through the steps and providing helpful diagrams and photos to show the circuit as it develops on the bread board. (See the sample bread board diagram in the sidebar at the right.) Going into the build, I didn't have any prior knowledge of drains and gains, and my own understanding of how the rows and columns of the breadboard were related to the drain and gain didn't form immediately. Even so, if you follow the steps, putting the elements in place on the circuit step-by-step, as directed, you can do (or lead) this robotics project! (Note: Students who are working on the project as an independent project for the science fair or for a school project will want to really dig into the meaty information in the introduction, but families and science moms can approach these bots just as a fun hands-on building activity. You and your kids will be learning along the way, but don't worry up front about whether or not the circuit diagrams make sense to you!)


Follow the Directions

While doing this project, your kids will need good fine-motor skills and close attention to detail to make sure they get things inserted in the proper slots and inserted firmly. Be prepared to help with some tiny parts and to help check and double-check that pieces are in the right spots. If, like us, you are not soldering but relying on twisting battery wires to jumper cables, be prepared for a process that may feel like micro surgery with the very tiny battery wires. (Note: An adult will probably need to do this, but twisting does work.) If everyone follows the diagrams closely, building these bots can feel a lot like building a LEGO® project!

Even when you are careful, however, things sometimes go wrong. It's good to keep that in mind going into any family science activity. Things happen! Learning to deal with problems that arise in a science or engineering project is part of the process, and when something goes wrong in an electronics project, there is ample room for tinkering and emphasizing troubleshooting and testing steps.


A Bit of Resistance

Resistors can look alike / be careful to choose the correct value!

Look Closely

We initially selected the wrong resistors from the multipack, and it took us a while to realize our mistake. Be sure to look carefully to make sure you get the right value resistor!

We ran into a few trouble spots in the process of building our bots, one of which almost completely derailed us. As a result, we got a lot of practice troubleshooting, and we learned a great deal from the mistakes we made. The "help" information in the project was a great source of assistance when things didn't work out with our bots. When one of our bots got super hot (even though it wasn't moving), for example, we got a crash course in the importance of ensuring none of the bare wires are accidentally touching. And when none of our bots "worked" after we finished our circuits, we spent a lot of time backtracking through the diagrams and double-checking to ensure we had every single thing exactly as shown in the circuit.

There was some frustration, mine included, when we could not pinpoint what was wrong. Our circuits looked fine, but we had three cute little bots and bedecked circuit boards that didn't work. Finally, we discovered our error. It was a simple error, but it was a critical error.

The kids were ready to give up and move on, their excitement a bit burnished, when we discovered the problem.

Because we were making several bots, I ordered the large multipack of resistors listed as an option in the project's list of materials. The pack of 500 includes resistors in varying values. Unfortunately, even though we thought we had carefully matched up and interpreted the band-coding used to identify the values and to pull out the one we needed, our inexperience with resistors threw us a wrench. It took us a very long time to determine that we had accidentally selected 47 kΩ resistors instead of the required 4.7 kΩ ones.

As you can imagine, with the wrong resistors, there was far too much resistance, and nothing was making it through the circuit. For a seasoned electronics project parent, it sounds like a silly error. But in the moment, and with no experience with resistors other than when a science kit (like the Crystal Radio Kit) comes with only and exactly the one you need, I had no idea I had misinterpreted the packaging of the resistors and values. (I had not even noticed that there was another very similar-looking value in the set.)

Once we swapped out the too-strong resistors for the right ones, we were in light-tracking toothbrush bot business.


Light-tracking Success!

Once we had everything on track, the light-following bots worked great and were super fun to lead around with cell phone flash lights or other lights. The kids were very excited to see the bots come to live once we swapped out the resistors, and they immediately grabbed a cardboard box lid, turned out all the lights, and started guiding the bots around with cell phone lights. There were some races and then some impromptu videos made of the robots they had made, bots that, really, look pretty impressive when finished and definitely warranted being shown off to friends and family.

This is a project I highly recommend you consider with your kids over the long winter break or for weekend fun. Don't be afraid of the "advanced" rating on the project in terms of difficulty. If your goal is simply to build the bots and not take a crash course in understanding circuit diagrams, you can do and succeed with this robotics project with your kids—without any prior electronics or robotics experience. You know your kids best, but I was successful doing this project with kids in the range of 8-13 years.

If you have a family tradition of giving things "to do" during the holidays or for other celebrations, consider boxing up the supplies for the "Build a Light-Tracking Robot Critter" project for a special kid who likes to tinker!


Make Family Time Robotics Time

If you are interested in trying a robotics project with your kids, here are a trio of robotics engineering projects, from beginner to advanced, to consider:

The following blog posts and resources may also be helpful and inspiring for families interested in exploring robotics:


Share Your Family Science or School Science Project

What did your recent science project or family science activity look like? If you would like to share photos taking during your project (photos like the ones above or photos you may have put on your Project Display Board), we would love to see! Send it in, and we might showcase your science or engineering investigation here on the Science Buddies blog, in the newsletter, or at Facebook and Google+! Email us at blog@sciencebuddies.org.


Categories:

 

Tastebuds Human Health Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a human biology and health science project and family activity that encourages you and your family to investigate the science of taste! Do your taste buds differ from those of your friends, siblings, or other family members? Probably! In this project, you conduct a scientific experiment to explore your taste threshold for things that are salty, sweet, or sour. Once you've analyzed your own taste buds, see how other family members and friends compare!

[Image: Wikipedia]

Categories:

 

Weekly Science Activity Spotlight / Cranberry Sauce Science Project for School or Family Science

In this week's spotlight: a food science project and family activity perfect for the holiday kitchen! Are cranberries a part of your holiday menu? Does your family like a wiggly, solid cranberry roll, or do you make a looser cranberry sauce. What causes the difference in consistency? In these hands-on science projects, you and your family can experiment to see how cooking time affects the natural pectin in cranberries.

Categories:

 

During the holiday season, pies are front-and-center on the dessert menu. Become the pie-baking champion in your family with this tasty experiment.


2013-blog-pie-crust.png

Turning Family Baking into Family Science

In the "Perfecting Pastries" kitchen science project, students explore the role of fats in piecrust making. Different fats (and fats at different temperatures) can make a big difference in the texture of the crust. But what about gluten? If your family festivities involve gluten-free cooking, thinking about concepts in the "Great Globs of Gluten! Which Wheat Flour Has The Most?" science project can be a great addition to your piecrust testing. If you keep the fats the same and vary your flours to make a gluten-free version, what kinds of differences will you see in your crusts?

Pumpkin, strawberry, or all-American apple—do you have a favorite kind of pie? While pie consumers tend to think about the delicious variety of fillings there are to eat, many pie bakers spend a lot of time perfecting their crusts. Some people are so intimidated by the idea of making a tasty crust from scratch that they prefer to buy them, but with a bit of hands-on experimentation in the kitchen, you may find your own perfect technique for great homemade crust.

Getting to Golden Perfection

The ideal piecrust is light and flaky, rather than tough and chewy. But what is the best way to create a perfectly light and flaky crust? Usually, piecrusts are made with just flour, fat, salt, and a little bit of water. You mix the fat into the flour first, which coats the flour particles. Then, when you add the water, the resulting dough is slightly crumbly, rather than stretchy like pizza dough.

With so few ingredients, how can piecrusts vary in texture? For starters, you can use different types of fat—butter, vegetable shortening, or even lard. Different fats yield different results. Another variable is the temperature of the ingredients. Should the fat be room temperature when you mix it in, or should it be ice-cold? Chances are, the pie baker in your family has an opinion!


Grab Your Chef Hat and Lab Coat

In the "Perfecting Pastries: The Role of Fats in Making a Delicious Pastry" Project Idea, you take the lead in your own piecrust test kitchen! In this project, you will experiment with the type and temperature of the fats used in your piecrust recipe. Following the experimental procedure in the project, you you will make four different crusts, being careful to keep your bake time and oven temperature constant for all of the crusts so that you can really see the difference the variables you are testing make in how the crusts come out.

When your crusts are ready, gather friends and family to see how the crust crumbles! Which recipe creates a crust with the best texture and flavor? Everyone will have the chance to see and taste your crusts and voice their opinions.


Put Your Results to Good Use!

Once you have your winning recipe, you can prepare one last piecrust and fill it with something delicious! Success has never been sweeter!

Categories:

 

Get Your Spud On with Potato Science


Potatoes make a great side dish, but they also make great subjects for hands-on science! Food chemistry, plant biology, and even basic electronics are all on the menu when you experiment with potatoes.

What is your favorite food on the Thanksgiving table? Turkey with cool cranberry sauce? Pumpkin pie with a dollop of whipped cream? For me, it is creamy, smooth mashed potatoes, piping hot and dripping with extra butter!



Potato Science
A South American Treasure

South American cultures had been eating potatoes for thousands of years before Spanish explorers brought them to Europe in the late 1500s. Despite their high nutritional value, it took about 200 years for potatoes to begin appearing regularly on European dinner tables. Until then, they were mostly used to feed animals. Now, however, potatoes are a staple in cultures all over the world, baked, boiled, steamed, mashed, and especially fried.


What Can You Learn from a Potato?

Some people say that fish is brain food. Try one of these Science Buddies Project Ideas, and you may decide that potatoes are brain food too!

  • Potato Batteries: How to Turn Produce into Veggie Power!: Our bodies use food for energy, but is it possible to power a light bulb with a potato? Yes! This fun Project Idea leads young scientists through the basics of batteries and circuits. A convenient science kit is available from the Science Buddies Store!
  • Do Potatoes Regulate the Formation of New Sprouts?: Why does a potato have eyes? All the better to grow with! When placed in a dark location, potatoes can grow new stems from their eyes and eventually produce new potatoes. Do all of the eyes grow new stems? Investigate whether there's a limit to the number of sprouts that can grow from a single potato.
  • How Greasy is Your Potato Chip?: Traditional potato chips are fried in oil to give them a nice crunch. Newer recipes call for different cooking methods to make them more healthful. With a rolling pin and graph paper, see for yourself how much fat different varieties of potato chips contain.
  • Smashing for the Mash: The Science of Making Memorable Mashed Potatoes: Be the mashed potato hero in your home! In this hands-on experiment, you'll try a variety of cooking and mashing methods to discover how to create the most delicious potatoes for your dinner table.
  • Hey, Do You C My Potatoes?*: "Eat your veggies!" Grown-ups know that fruits and vegetables provide us with essential vitamins, but do cooking methods change the amount of vitamins that end up on our plates? Discover the best way to get the most vitamin C from your potatoes.

Plan Ahead for the Holidays

Thanksgiving and winter breaks are right around the corner. Skip the screen time and try some hands-on scientific exploration instead!

Categories:

 


In this week's spotlight: a food science project or family activity that adds a dash of salt to questions about health and nutrition. The salt in your family's table shaker may be iodized because iodine is an important micronutrient that not everyone gets naturally in the foods they eat. To help prevent iodine deficiency, many salts contain added iodine (in the form of iodide). Not all salts are iodized, however. In this pair of projects, families experiment to see which salts contain iodide. The label should tell you if the salt contains iodide, but these projects let families use a visual test to observe the chemical reaction that occurs if iodide is present. Does what you see match what the label tells you?

Categories:

 

Weekly Science Activity Spotlight /  Science Project for School or Family Science

In this week's spotlight: a sports science project that invites students and families to examine the relationship between walking pace and height. Do you have to walk faster or slower to keep up with a friend or family member? How is that related to how tall each of you is, and why? Can you estimate how tall someone is by how many steps they take to cover a certain distance? Put this question to the test with a simple hands-on science experiment and learn more about special ratios that can be used to talk about the human body.

Categories:

 

In honor of World Diabetes Day, we review a compelling autobiography by Phil Southerland, founder of Team Novo Nordisk. Phil didn't start out to change the world's view of diabetes or inspire others with diabetes, but his path on one bike after another led him to exactly that. Today, Phil and his team are making a difference around the world, raising awareness about Type 1 diabetes, and providing important role models for people with Type 1 Diabetes of all ages. Not Dead Yet, his story of how he got there, is an amazing read.

World Diabetes Day blue circle

Shining a Light on Diabetes

November is National Diabetes Awareness Month (#NDAM) and today, November 14, is World Diabetes Day. Throughout the month of November, Science Buddies has been making daily updates at Twitter to highlight hands-on student science angles for students hoping to experiment with subjects related to diabetes.

Thanks to support from Novo Nordisk, Science Buddies has numerous Project Ideas that specifically deal with diabetes. In addition, many other projects and resources may also be relevant for a student who wants to undertake a diabetes-related science investigation. Understanding diabetes, its symptoms, treatments, and risks is something important for all individuals—not just those with diabetes.

A few of our tweets from NDAM appear below:

  • @JackAndraka developed pancreatic cancer test at 15. What might a student #science project discover for #diabetes? #NDAM #T1day @NovoNordisk
  • Sucrose, Glucose, Fructose, Oh My!: not all foods turn to glucose at same rate #science @NovoNordisk #diabetes http://ow.ly/qkSiW #NDAM
  • How Sweet It Is!: investigate fruit/juice glucose concentration. Student #science @NovoNordisk #diabetes http://ow.ly/qkRRd #NDAM #STEM
  • Student #science idea: video game playing count as exercise? Tweak to investigate blood sugar changes #diabetes http://ow.ly/qkSqd #NDAM
  • "How Many Sugars are in Your Smoothie?" - student #science project #diabetes @NovoNordisk http://ow.ly/qkSLO #NDAM
  • Student #science "Modeling the Chances of Getting an Autoimmune Disease" with candies and dice. #STEM #NDAM #diabetes http://ow.ly/qAkIU
  • Student #science: Visualize the sugar in non-diet soda using a hydrometer. http://ow.ly/qkT5G #STEM #NDAM
  • Does the ripeness of the fruit change the carb count? Student #science #diabetes http://ow.ly/qkT9k #NDAM
  • Hands-on student #science: Analyze blood sugar data with range, variance, and standard deviation. #NDAM http://ow.ly/qMHEJ #diabetes

To follow all of our updates, please join us at Twitter.


Hands-on Science Project for Students Interested in Diabetes and Health

Students wanting to learn more about diabetes—or wanting to explore aspects of their own diabetes with a hands-on science project—can get started by considering one of these Science Buddies Projects Ideas:

I don't know much about cycling. Other than the big names that probably everyone has heard of in the context either of sports victory, health-related comeback, or, unfortunately, circuit scandal, I am pretty clueless about the world of professional cycling. Other than the really big circuit races, I don't know one Tour de from another. And, a year ago, like many, many others, I didn't know Type 1 diabetes (T1D) from Type 2.

When I wrote about Team Novo Nordisk over the summer, I found myself unexpectedly caught up with the all-Type-1 cycling team, with what they stand for, with what it must be like to ride at that level and successfully manage T1D, and with the positive message they send to everyone they roll past on their bikes—diabetes doesn't have to stop you.

After reading the team's story and learning more about its grass-roots origins, I picked up a copy of Phil Southerland's Not Dead Yet: My Race Against Disease: From Diagnosis to Dominance. From online reviews and the book jacket, I expected the book to be about the trials and tribulations of managing T1D and being a professional athlete at the same time. I expected the book to be about diabetes, about winning against the poor odds doled out by doctors when he was first diagnosed with T1D as a child thirty years ago.

Not Dead Yet surprised me.

As I read Not Dead Yet, I learned about levels and intricacies of professional cycling (and of road racing versus mountain racing). I read, and I recognized in Phil qualities familiar to anyone who has lived in the "south." I read, and I found myself charmed, surprised, inspired, and amazed, time and time again by Phil, by the story, by the incredible amount of detail he recalls about countless races in the last two decades, by his persistently positive perspective on his diabetes, and by his transformation from an adolescent riding with buddies in his hometown to the founder and CEO of what has evolved into Team Novo Nordisk, a global sports organization.

As I read, I got glimpses of T1D, but not in the way I expected. Instead, surprisingly, though Phil was conscientious, always, about managing his diabetes, his diabetes runs almost as an undercurrent or side-story to his development as an athlete. There is a peanut butter and jelly sandwich he ate from another student's lunch in kindergarten when he was low. There is a cupcake moment he recounts this way: "At six years old, I became the CEO of my body." There is the fear of blindness, a common complication of uncontrolled diabetes, that underwrites his story and his acute attention, always, to his A1C number. There are slivers of diabetes throughout, but the bulk of Phil's story focuses on the growth and development of a kid looking for a father figure, a kid capable of incredible focus and determination, and, oh yeah, a kid with Type 1 diabetes.

That Phil's mom galvanized and educated an entire community of friends and neighbors when faced with the realities of Type 1 diabetes should not go un-noted, and Phil is quick to credit with his mom for how she handled his diagnosis and the management of his diabetes when he was young. In many ways, her approach to his diabetes seems to have set the stage for the story to come because, no matter what the sport or challenge, Phil didn't grow up thinking that diabetes should stop him. Early in his story, he writes: "At this point you might also be thinking that my childhood was a horror. Puking, injections, seizures, suppositories, divorce, and sibling guilt. A real barrel of laughs. Well, here's the other side of that story. These and a few other episodes stand out in my mind vividly, in part because they were the exceptions, not the rule. While some people find this hard to believe when I tell them, most of my childhood was... well, it was great." (47)

Recalling his early elementary school years, Phil writes: "I guess I was determined: determined to prove anyone wrong who thought I was not capable of doing what any other kid could do, and maybe doing it better. Determined not to let the diabetes rule my life.... Determined to excel, to succeed (although at what, I wasn't sure). Determined to get on with life and to do what had to be done. Above all, though, determined to be a kid—albeit perhaps a slightly more mature one. (52)

By chapter 3, 11-year old Phil has us following along as he spends time on the racquetball courts, determined to develop the skills and techniques needed to win against another boy about his age. With racquetball, Phil first begins a training regimen and pattern of determination that will recur again and again in his story, even as the sporting focus changes. On the way to developing his racquetball skills, he was told by a mentor to practice 50 shots a day of each of seven common racquetball shots. A couple of hours, every day, day after day. Phil was on his way and, with each shot and each new match, he was seeing in action a lesson that stuck with him: "hard work produces results."


Growing Up on a Bike

Although Phil recalls always riding something, it is when he was about 12 that he remembers things changing. With a new mountain bike, he and his friends would ride and ride and ride. And sometimes the ride would end with a Snickers bar, all that exercise allowing an insulin-free indulgence. The next new mountain bike put him in touch with a group of older riders at a local bike shop, Revolutions.

Slowly, first through mountain biking and then, later, through a transition to road racing, we see the development of Phil as an athlete, and as an adolescent approaching adulthood. There is a wonderful freshness to Phil's story. As an autobiographical account of growing up in the 90's, there are moments of teenage angst, moments of adolescent exploration, examples that stand out as tally marks on the quest for identity. When Phil goes to watch his first Twilight Criterium, he shaves his hair into a Mohawk, dyes it red and green, and pours Elmer's glue over it—"so that my single hedgerow of hairs stood up like bristled in a brush."

Candid and unexpected moments like these jump out and grab a reader time and time again in Phil's story. And as Phil's development as an athlete continues, there are moments when you might be tempted to forget that diabetes is the understory and insulin his lifeline. Mentions of a high blood sugar reading or, more frequently, the need to bolster a low blood sugar, dot the landscape of Phil's ride from one race to another. There are a few frightening tales of extreme lows, stories that reinforce the importance of friends being well-informed about diabetes and what to do if a problem arises. But racing, not diabetes, was Phil's platform as he began his years at the University of Georgia.

Then Phil meets Joe Eldridge, another cyclist with Type 1 diabetes. As he and Joe become friends, Phil realizes that not everyone with diabetes is as diligent about managing the disease as he is. He challenges Joe to a series of blood sugar checks, with the loser paying the tab for burritos. As Joe's approach to his diabetes changes, Phil realizes that he has something to offer—and realizes that he wants to connect with other diabetics and to help ensure others realize that diabetes is not easy, "but once you figure it out, everything else in your life becomes easier." (185)

Phil's story continues, and readers learn both of the injury that sets him back as a rider and of the kindness of a stranger at a coffee shop that helps him take a business idea from paper to reality. Team Type 1 is born, and Phil, who had practiced making conversation with people while working in a grocery store as a kid, begins dividing his time between pitching and growing Team Type 1 and his own training. There are corporate sponsorships which helped pave the way in the early days, and there are people and supporters who made the first Race Across America (RAAM) (and the second) possible. There are changes, challenges, hypoglycemic lows, nutritional experiments (and mistakes), logistics planning (and oversights), and successes and setbacks.

In Not Dead Yet, Phil takes readers along for the exciting ride.


It is a ride that continues to evolve, a ride that Phil and other members of Team Novo Nordisk, formerly Team Type 1, continue to chart as they manage their own diabetes and help show others with Type 1 Diabetes that taking control of diabetes is imperative and, once you do, you can do anything.


Note for Parents: Not Dead Yet: My Race Against Disease: From Diagnosis to Dominance is an amazing, real-world coming-of-age story, one that readers with an interest in sports or an interest in diabetes may especially enjoy. The book does include themes and subjects typical of many adolescent stories, so use parental guidance with your readers.



Novo Nordisk
Science Buddies Project Ideas that support student exploration of diabetes and other global health issues like hemophilia and nutrition are sponsored by Novo Nordisk.

Categories:

 

With its broad spectrum of free scientist-authored projects for K-12 students, Science Buddies wants ALL students to have a great science project experience—girls and boys. For teachers and parents looking for ways to engage girls in science, Science Buddies has plenty of suggestions. Finding a great project that taps an area of interest is one of the most important things to keep in mind when helping students select projects.

Girls and STEM: Better Understanding the 'Leaky Pipeline'

With support from Motorola Solutions Foundation, TrueChild is digging into issues related to STEM, gender, race, and ethnicity. See their STEM white paper report "Do Internalized Feminine Norms Depress Girls' STEM Attitudes & Participation?" for a summary of what's at stake, what's happening, and what TrueChild is learning from focus group studies they are conducting. According to TrueChild's research, girls may feel they have to choose between "femininity and STEM." See TrueChild's "Femininity & Science, Technology, Engineering, Math" section for links to other relevant studies and reports.

How to engage, excite, and retain girls' interest in science, technology, engineering, and math (STEM) is an ongoing challenge and area of concern for educators and parents. Plenty of studies demonstrate that while many girls show enthusiasm for STEM subjects, and may voice STEM-related career goals, during early elementary years, there is a marked drop-off in interest in STEM that begins as early as grade 4 or 5 and continues to taper off through middle and high school. (Similar decline in interest in STEM subjects can also be seen in students in other demographics.)

Understanding "why" girls lose interest in areas of science and changing the dynamic has become a top priority for many who are involved in science education and, ultimately, ensuring a healthy pipeline between formative school years and the emerging job force.


Why Not Science?

The problem of "girls bailing on science" is not one with immediate and concrete answers as the convergence of a number of factors has likely contributed to what has become a broad-spectrum problem. There are no easy answers, but there are myriad steps that may help encourage and recoup female student interest. Increasing the visibility of female role models in science and in fields like robotics, engineering, and computer science, fields often associated with males, is certainly important. Girls looking to those fields need to find plenty of examples of female scientists to help them better envision both the field and their own potential place in such a field of work and study. Ensuring girls have access to (and encouragement for) a wide range of science-related opportunities both in school and through extracurricular and after-school activities is also important. Making clear to all students, through presentation, through teaching, through example, and through at-home discussion, that there are no "boy" and "girl" fields of science is a must. The stereotypes that surround certain fields of science, and the ways in which developing students respond to those stereotypes, may have much to do with the kinds of projects girls choose for their science class and science fair assignments.

These are all important steps, but they are only individual strands that feed into a complicated and multi-headed problem. No single approach can realign girls' perception of science, and change won't happen overnight. Rebalancing STEM so that girls see these fields as interesting, exciting, and viable, as relevant and possible for them, may take the proverbial village, but it also is going to take a lot of diligent and hard work on the part of teachers, parents, community members, and volunteers who are all committed to getting girls excited about science and to helping girls see that they, too, can be scientists and that there are many, many different areas of science to explore.


Finding a Science Project

So how do you get a girl student engaged in a hands-on science assignment, project, or activity? What project should you encourage? What project should she pick? The answer may be more simple than you think. She should pick a project that interests her or that taps into an area of interest.

At Science Buddies, we believe that all students, male or female, can perform any of the Project Ideas in our library of more than 1,200 free science projects when the project is appropriate for the student in terms of difficulty and available time. This is especially true if the project is one in which a student is interested.


A Project She will Love

This focus on the importance of student interest is the foundation on which Science Buddies' Topic Selection Wizard operates. After a student responds to statements about his or her interests in the Wizard's survey, projects that best fit the student's existing interests rise to the top as recommendations for projects the student may most enjoy. This does not mean there are not other projects that the student might find satisfying, challenging, and exciting. But students who use the Topic Selection Wizard are more likely to uncover and discover projects that really mesh with their interests—even in areas of science they may not have considered but that fit in, nicely, with an interest or hobby. We always encourage students to try the Topic Selection Wizard as a first step in locating a science project.

Some girls, of course, will gravitate to Project Ideas that center around subjects and topics that may typically be associated with girls. That's fine! Science Buddies offers a broad range of projects and experiments that meet that need. But many female students, based on their individual areas of interest, will find exciting and challenging projects that may capitalize upon their interests and skills and may open up areas of science, technology, engineering, or math that are unexpected or new to them but that they will really enjoy.


A Handy List of Girl-friendly Science Projects

We could post a list of projects that we know from experience are especially easy for girls to see and choose, but we feel strongly that in order to help change the dynamic, we want, always, to support the fact that the awesome new projects we are developing at Science Buddies are put together by our team of scientists to encourage an amazing science experience for a student—regardless of whether the student is male or female. Here are a few of our recently released Project Ideas that we think are super fun, exciting, creative, and have the potential to empower both girls and boys to further explore science and engineering.

Girls STEM explore blood clotting Girls STEM art bot robotics Girls STEM separating mixtures

Girls STEM candy chromatography Girls STEM grape soda dye Girls STEM electric play-dough

Girls STEM candy waterfall flow Girls STEM snow globe centrifuge Girls STEM milk plastic polymers

Girls STEM butterfly flight Girls STEM dance glove Girls STEM hula hoop physics



The Project Ideas shown above are just a tiny sampling of the wide range of projects students will find at Science Buddies (more than 1,200 projects in more than 30 areas of science). We encourage teachers and parents to have students first try the Topic Selection Wizard. (Sit with your student and look through the results together!) If a student is still uncertain about which project to choose, spend time looking though the library of Project Ideas, starting first with an area of science in which the student seems interested.


Supporting the Process

Parents and teachers play a critical role in how girls perceive and respond to science. Making science a part of the daily car ride or family dinner is an easy but important way to show girls that science matters and is relevant to them. We suggest parents and educators review the following resources, success stories, science history notes, and book reviews for additional encouragement and support in helping engage girls of all ages in science:


Keep in mind, too, that how parents talk about and respond to issues of science, technology, engineering, and math has an impact on students. There are many, many ways you can do hands-on science with your kids at home, after school, or on the weekends even if you are not a scientist. Family science should be fun! We highlight a family-friendly science activity every Thursday on the Science Buddies Blog. But we also frequently post stories of families who have tackled various kinds of science projects, including math, electronics, and robotics—with no prior experience!




Motorola Solutions Foundation is a supporting sponsor of Science Buddies.


Motorola Solutions Foundation

Categories:

 

Weekly Science Activity Spotlight /  Zoology Camouflage Science Project for School or Family Science

In this week's spotlight: a pair of zoology science projects that let students and families explore how some animals use camouflage so they can better blend in with their surroundings. Does camouflage really make a difference when it comes to the relationship between predators and their prey? Give it a try in fun hands-on science activity using M&M® and Skittles® candies. If you are a hungry predator trying to grab a specific color of M&M, how hard will it be to find your prey if the prey blends in with its Skittles surroundings? Experiment to find out!



Categories:

 

This Experiment is Totally Sweet


November is a great time to experiment with a kitchen science project. A cheesecake smackdown explores how subtle variations in cooking methods can create very different results!

By Kim Mullin

Cheesecake food science project

Make Cheesecake a Scienctific Part of Your Next Family Gathering!

Volunteer to make dessert for your next family event, and you can combine making a tasty contribution for after dinner with a kitchen science exploration! (Image: Wikipedia)

When is a cake not a cake? When it is a cheesecake! Creamy, sweet, and delicious, cheesecake is definitely a dessert, but it is a rich and dense custard instead of a spongy and light birthday-style cake. Mmm...cheeeeeesecaaaake....

Variations on the Cheesecake Theme

Traditional cheesecake recipes only call for eggs, sugar, vanilla, and a milk product such as sour cream, heavy cream, or cream cheese. This kind of basic recipe lends itself to creativity, so nowadays, you can find cheesecakes in all sorts of mouth-watering flavors: chocolate chip cookie dough, pumpkin pecan, and lemon raspberry, to name just a few. Yum! Search for cheesecake recipes online, and you'll find that anything goes.

When you head to the kitchen to make your own cheesecake for a family gathering or a weekend treat, all you need to do is mix up all of this sweet and creamy deliciousness and throw it in the oven for an hour, right? Not so fast!


Recipe Variations Equal Varied Results

When it comes to baking, there is a science to getting the results that you want. Professional bakers pay careful attention to measuring ingredients, controlling temperatures, and mixing at the right speeds. They know that the wrong variations can mean the difference between a baked good that's perfectly light and delicious, and one that's overly tough and chewy.

Cheesecake bakers want a nicely risen filling and a smooth, crack-free top, but there are three different recommended baking methods. Which one is best? The way to find out is to put it to the test!

The "Choice Cheesecakes: Which Baking Method is Best?" food science Project Idea lets you be the head chef in a delicious experiment! Always using the same cheesecake recipe of ingredients, you'll test all three of the recommended baking methods and then count cracks and measure the rise to see which approach gives you the best results. When looking at your data, think about why the different baking methods change the outcomes. Which method would you recommend?


Sweet Success

This is one science experiment that you are definitely allowed to eat, so when all of the baking is done, it's time to dig in! You'll end up with lots of cheesecake, so invite friends and family to enjoy the results of your cheesecake smackdown. You might even take an un-scientific poll to see which method makes the best-tasting cheesecake. You'll have everyone saying that science is sweet!

Categories:

 


In this week's spotlight: a pair of physics science projects that invite students and families to explore the granularity of materials. Can you pour candy in a way that is similar to pouring water? What determines whether or not a material can "flow" in this way? Which variables affect how smoothly the material flows? With your Halloween candy bag at hand, you can put it to the test with your own "candy waterfall" in these hands-on science project and family science activities.

For other Halloween-related science suggestions, see: Time for Spooky Halloween Science.

Categories:

 

Slime, Catapults, and Halloween Science


Inspire hands-on learning by getting creative. You can easily turn chemistry and physics science experiments into Halloween-inspired activities that your students will enjoy!

Ping pong balls for  Halloween catapult science fun

Setting Siege for Halloween Fun

A quick Internet search on "Halloween ping pong balls" turns up all kinds of great visual examples of how you can transform ordinary ping pong balls for Halloween fun. A dozen eyeballs anyone? Get creative! Mummies, ghosts, Frankenstein, pumpkins, bats, witches... decorate a set of ping pong balls with your kids and then have fun launching them into the trick-or-treat candy basket with the Ping Pong Catapult. Your kids will have fun experimenting with science and the physics behind successfully getting the balls to the target! [Image: Booturtle]

Halloween is tomorrow. Hopefully you've found, stitched, glued, or otherwise assembled all necessary gear for the big night of knocking door to door for fun treats. To keep you in the mood, we've got two more hands-on science suggestions, both of which are fun ways to tie science into the festivities, even after the fact!


Slime

To hook some kids, it's that simple. You need slime. For the rest of us, despite the gross factor, the science of slime, when you get right down to it as it oozes through your fingers, is chock full of squishy but fascinating chemistry! Mixing up a stretchy putty or experimenting with Oobleck, Ooze, or some other non-Newtonian fluid is classic, hands-on, tactile fare for the younger set. They love to get really hands on with their chemistry, because it feels good, or cold, or slippery, or bouncy, or some other wonderful adjective that a toddler or early elementary student might toss out to describe how a new mixture feels. But these substances offer excellent hands-on learning moments for older students, too!


Colloids and Polymers, Anyone?

Slime, especially glowing, green, the color-of-some-unearthly-snot slime, fits right in with the fun but eerie side of Halloween. So why not make your own, but turn the "making" into a fun science activity—one with a clear take-away, slime you can dig your hands into or bounce around.

In order to keep things shrouded in mystery, we don't want to tell you exactly which formula to use or how to modify one recipe or the other to achieve the best and slimiest consistency. Instead, we want you to experiment!

These two Project Ideas have the goods you need to know, including background information that will let you and your kids talk about polymers and colloids and better understand the properties of each mixture you try.

  • Bouncy Polymer Chemistry: use Elmer's school glue and Borax to mix up something like the classic Silly Putty. By experimenting with the ratio of your ingredients, can you make this slime-like? Or does it only want to be a rubbery, bouncy, putty? To make your polymer exploration extra spooky, use a colored Elmer's glue or try Elmer's School Glue Gel. (It's blue!)
  • Making Mixtures: How Do Colloids Size Up?: experiment with corn starch and water to mix up some Oobleck or Ooze. Colloids have interesting properties because sometimes they seem like a liquid and sometimes they seem like a solid. What kind of slime factor can you concoct?

You could mix up a batch of both mixtures, a putty and a colloid. Or, pick one or the other. Both are fun to make with kids. If you have some glow-worthy paint you can mix into the batch (try a small quantity), you might be able to turn a bit of family or after-school science into an awesome trick or treat moment!


Catapult

Catapults have a long history of launching things, including fiery things, into enemy territory. Brought into the realm of hands-on science, a catapult is a super way to experiment with physics principles and the math that goes along with correctly launching something so that it goes where you want it to go.

Science Buddies has a suite of Project Ideas that use the Ping Pong Catapult kit, available in the Science Buddies Store: Bombs Away! A Ping Pong Catapult, Under Siege! Use a Catapult to Storm Castle Walls, Bet You Can't Hit Me! The Science of Catapult Statistics, and Launch Time: The Physics of Catapult Projectile Motion.

These projects are all great explorations individually, but the suite allows students to use a single kit and experiment with multiple angles (literally!) related to similar physics-based scenarios and questions. How can you tie the catapult in with Halloween science?

No, not launching pumpkins! But what else might you try? How many individually wrapped small candy bars will come home Halloween night? Is there a game you and your students might make up to launch candies into a Halloween bucket, box, or bag? What might you explore about the difference in flight pattern and trajectory of different candies based on variables like size or shape?

Or, if you want to stick with ping pong balls because they are light, will only fly a certain distance, and won't be a concern if they wind up lost under the couch, grab a permanent marker and turn them into jack-o-lanterns and other Halloween creatures for added catapult fun—without the mess of pumpkin guts! (A quick Internet search on "Halloween ping pong balls" turns up all kinds of great visual examples of how you can uplevel ordinary ping pong balls for Halloween. A dozen eyeballs anyone?)

Warning: when using the ping pong catapult, especially if you are launching objects other than ping pong balls, be sure you have plenty of space and don't launch towards windows, screens, or other breakable things. This may be a science activity to take outside the weekend after Halloween and have some candy-launching fun at a local park!



Elmer's Products, Inc. is the official classroom sponsor of Science Buddies. For a full range of display boards and adhesives that can help as students get ready to showcase their science projects, visit Elmer's!


Categories:

 

Time for Spooky Halloween Science


As trick-or-treat night approaches, we have plenty of suggestions for hands-on science you can fit in with Halloween festivities and discussions!

Halloween hands-on science

Meet your kids where they are—in the Halloween mindset! Science Buddies has great ideas for giving Halloween a boost of hands-on science.

Every year we highlight projects at Science Buddies that, when carved or backlit this way or that, can easily be adapted for Halloween and trick-or-treat fun with students in the classroom or at home. If you are looking for activities you can do with your students, for science-minded conversation starters for the car ride home, or for homeroom discussions before and after Halloween, consider the science activities and science connections highlighted in these posts on the Science Buddies Blog:


A Ghoulish Tradition on the Blog

This year, we've added a few new Halloween-inspired posts to our collection to highlight new hands-on science projects from our library of Project Ideas. If you missed these posts in recent weeks, be sure and add them to your reading list for great Halloween-infused science suggestions:

Have a great Halloween week!

Categories:

 

With a new group of electronics Project Ideas and a cool kit from the Science Buddies Store, you can turn ordinary play dough modeling into a great hands-on electronics activity with your kids.

Squishy circuits electric dough family science

Since the trio of "electric play dough" projects launched at Science Buddies, I have wanted to give these hands-on science projects a try as a weekend science activity with my kids. The idea of rigging up an electronics-friendly batch of dough to some LEDs has undeniable allure. It just sounds cool, and the sample photos in the projects are very compelling.

Whether you love the tactile angle of working with a squishy dough, just like when the kids were little, or like the idea of an easy light-up electronics project, the "squishy circuits" approach invites users of all ages and backgrounds. The premise is simple—by making and using conductive and insulating dough, you can create your own light-up 2D and 3D sculptures. To get there, you follow the step-by-step, progressive, directions, and make some simple dough samples that will help you learn about open and closed circuits, series and parallel circuits, and short circuits.


Halloween Circuits

All of the samples for this project seem to be green, but with Halloween coming, we thought we would experiment with some ghost- and pumpkin-themed squishy circuitry. Our orange conductive dough came out nice. Basic color mixing theory with our red and yellow food dye worked as expected. My kids wanted to make our insulating dough black. I did caution that with the food coloring we had on hand, we might get brown, but even I didn't quite expect what we got. As you can see from the photos, our insulating dough came out a really gnarly, nasty, icky brown. Yuck! (Tip: the directions do not talk about adding coloring to the insulating dough. We decided this may be because the insulating dough is much drier in the bowl since you add the distilled water last. The coloring worked and did mix in, but you may find it best to add it after you've added most of the water needed to reach the desired consistency.)

We were not thrilled with our brown dough, but that's what we had, brown and orange. So, with ghosts, goblins, and jack-o'-lanterns in mind, we got started.


Squishy circuits electric dough family science

Read the Procedure

Especially because we were doing this as an informal activity, I knew the kids would not be following the experimental procedures verbatim. We didn't need to record data. We didn't need to turn anything in. We simply wanted to play around with the dough and LEDs. Before I let them loose with the dough, though, we pulled up the directions and each read through the background information for Electric Play Dough 1 and Electric Play Dough 2.

And then they were off!

They worked through the examples first and had great luck with series and parallel circuits. Then they started making their own sculptures. Both did more elaborate parallel circuit examples and then attempted 3D models.

Not everything worked. We had some misfires, some miswires, and even some dough structures that looked like they should work and never did. But we had a great time, and there was lots of hands-on learning going on—and lots of troubleshooting. Watching them process how to step back (or backtrack) and test at each stage of a circuit to find out where the trouble began when a more complicated design was not conducting electricity the way they expected was wonderful—and important.

It was a hot day, and our dough seemed to get a bit weepy in the warmth, starting to feel (and look) tacky and damp as we continued debugging our final projects. The two kinds of dough also tend to want to stick together, which led to some interesting discussions about what happens if, in fact, you mix them. Having done the "Sliding Light: How to Make a Dimmer Switch" project in the past, one of my kids immediately had a theory about how a mixed dough might perform. (It's an idea to put to the test sometime, especially with some of your used dough!)


Afterthoughts

I have no doubt that the kids now understand the concept of series and parallel circuits in a way that they didn't before starting. Me, too! I wish we had ended up with a great pumpkin to share, but when you do projects as a family, things often take an unexpected path. That's okay!

When a 3D project went awry, one of my kids decided to go for a play dough burger instead. It is 3D, though arguably it's really just a larger example of a parallel circuit. (I think it looks like a space thing.) With the disco burger in the works on one side of the table, my other son co-opted most of the remaining dough for his own pumpkin-eque project. While they worked, I played around with some of the scrap dough that was left. (There wasn't much!)

My 3D pumpkin proved to be a great electronics puzzle and gave me lots of time to experiment through trial and error as I tried to combine what we'd been doing into one conceptual example. In the warmth, and with the small amount of dough I had, my pumpkin kept collapsing. The more times I stuck the probes in it trying to troubleshoot and test the circuit, the more it collapsed. Finally, I left it flat. In the end, it's a pretty scary looking something. (The photo of it here shows it after I'd removed a number of LEDs during my testing.) Admittedly, I was the last one sitting at the table—and the one left to clean up.

Squishy circuits electric play dough pumpkin family science

We plan to experiment with the squishy dough again in the future, working through some of the challenges we ran into and conquering some of the design issues we had—and emerging victorious with something 3D. Maybe this time we'll aim for a slightly less tacky dough, too. I think drier dough would have helped us a lot.

This is definitely an electronics and engineering experiment worth repeating. Once you have a squishy circuits kit (available from the Science Buddies Store), you can reuse the components over and over with new batches of dough.

What will you create?


You and Your Kids Can Do Electronics!

Afraid to tackle an electronics project with your kids? Don't be!

The first two electric play dough projects are written as introductory electronics projects, projects suitable for even the youngest of elementary students. This makes them great for independent science projects, but it also makes them excellent for family science or even classroom science. No matter what your expertise, familiarity, or comfort level with electronics, chances are good that you can read through the background information for each project and come away with a solid understanding of the core concepts.

After that, you and your kids can start experimenting. What should you make? We recommend working through the first examples (e.g., lighting up a single light bulb), so that you see how the circuits work. As you continue to experiment and add more bulbs, you will build upon your knowledge of circuits and see the information about series and parallel circuits play out in the dough in front of you.

To get started, you really just need to be able to roll up three wads of dough—two conductive and one insulating. If you keep the two conductive ones separate, you don't even need the insulating dough to start, just stick the legs of an LED in the two balls and hook up the battery pack. The LED should light up. If it doesn't, check to make sure your long LED leg is on the same side as the red wire and try again. (You will have learned something important by doing that!) Once you've successfully lit up a single LED, try the same process with a couple of LEDs and watch the brightness of the LEDs start to fade in a series. Then roll out two dough snakes and experiment with parallel circuits. You will be learning more and more about circuits with each sample you make!

What next? Your imagination is the limit to what you can do with dough, but you will need to apply what you learned about circuits to make sure your LEDs light up. It can be a trial and error process, but it is lots of fun!


Where to Go

The projects:

The kit:


Science Buddies Project Ideas in Electricity & Electronics are sponsored by the Broadcom Foundation.


Categories:

 

Weekly Science Activity Spotlight / afterimages Science Project for School or Family Science

In this week's spotlight: a trio of human biology and health science projects that invite teachers, families, and students to explore the way the human eye works. What happens when you stare at something for a period of time and then look away? You might continue to see the image, what is called an afterimage. We have versions of this exploration for an independent student project, a family activity, or a classroom activity!
2013-blog-scratch-visual-afterimages-trio_small.png



Science Connections for Halloween

For another look at afterimages and thoughts on tying this hands-on science to Halloween and to nudging your students to experiment with Scratch to make a simple computer program to demonstrate afterimages, see: "A Trick of the Eye for Halloween."

Scratch is a great way to get kids started exploring computer logic as they create fun games or applications. (See the post for additional links to resources and Project Ideas at Science Buddies!)


Categories:

 

If you are still thinking about what to wear this Halloween, you might find you can combine a science project and your costume needs to good, possibly ghoulish, effect!

My favorite Halloween idea this year is low-tech. I saw a "stick man" figure homemade costume, and I can't get it out of my head for its sheer simplicity—black electrical tape on a white shirt and pants. It is an unusual and fun twist on the classic DIY white tape skeleton costume and perfect for someone who loves to draw.

There are always a few kids at Halloween who explode out of the box with unexpected, cool, and definitely not-off-the-shelf, costumes. These are the ones I remember each year after the school costume parade. My favorite may be the girl who came as a salt shaker. I think another year she was a #2 pencil. In reality, though, these kinds of creative bursts are seemingly few and far between at Halloween, overshadowed by scads and scores of black capes, scream faces, blood-spurting masks, princess dresses, and character costumes from TV and the movies. (How many Harry Potter or Dorothy trick or treaters have you seen?)

If a roll of electrical tape falls in my lap, I may end up with a stick-figure shirt this year. But for you and your students, I want to suggest something much cooler... a science-project turned costume.

2013-fb-LED-etextiles-halloween.png
Combine your science know-how and your creativity to create an exciting costume this Halloween! The science involved in this LED glove can be applied to other parts of a costume. What will you make and wear?

A Science Project/Halloween Costume Combo

Really, when you think about it, this idea can be chalked up as a two-for-one special. The supplies you buy for the science project will also be used for the Halloween costume. It's a win-win. When you factor in the hands-on science learning that your student (or family) will gain from the science experiment, it's a win-win with interest!

Here are two suggestions for science projects from the Science Buddies library of Project Ideas that can be easily turned into a fun at-home activity that then becomes part of a cool and creative trick-or-treat costume.

  • LED Dance Glove: This brand new project at Science Buddies is an awesome way for kids to explore a cool new breed of electronics—wearable ones, also called electronic textiles or e-textiles. In the project, students learn how to use conductive thread and insulating fabric paint to turn a set of small LEDs into an awesome light-up glove. An LED glove is perfect for a party, true. But imagine using this idea as part of a costume! You could do gloves, or you could use the technology and wearable circuitry-knowhow to sew up some other light-up costume idea that is completely your own. Think about the possibilities! Forget carrying a regular glow-stick that will fade in a few hours. This Halloween you can make and wear your own glow!

  • How to Make the Boldest, Brightest Tie-Dye!: Tie-dye may be a classic summer camp or weekend family project, but the process of dyeing different kinds of fibers and exploring how fibers react to dye is a great science activity—one with wearable results. This science experiment can be perfect for a DIY Halloween costume! Whether you are making a groovy costume with 60s flair, prepping your own zombie or mummy rags, or making a groovy fan shirt for a favorite sports team, you can put your science tie-dye tests to use. Make part of the costume from one fiber (like muslin), and part from another (like a polyester-cotton blend), and have fun with the dyeing!

How Creepy is Too Creepy?

Whatever costume you pull together, you probably want to stay out of the "uncanny valley"—or maybe that is exactly where you want to be! Learn more about the uncanny valley and how it plays into how we respond to the characters we see in movies, or maybe the ones we run into on Halloween night, in the "That's Creepy! Exploring the Uncanny Valley" science Project Idea.

Categories:

 


In this week's spotlight: a pair of environmental science projects that help guide families in an investigation of different biodegradable and compostable items. Do all environmentally-friendly items decompose at the same rate or as completely? With a homemade indoor composter, you and your students can run your own experiment and see what happens.

Categories:

 

A Trick of the Eye for Halloween


Exhaust your eye cones in just the right way, and you can enjoy the spookiness of seeing something that isn't really there!

Afterimages screenshot Scratch program
Afterimages screenshot Scratch program
Afterimages screenshot Scratch program

The screenshots above are from a project a student created using Scratch to demonstrate afterimages.

Seeing something that isn't there can be spooky, right? That's what I thought one morning this month when I got out of the car after dropping my kids at school and saw a giant "phantom" in the basement window of the house next store to mine. After doing a momentary double-take, I realized that the creepy robed reaper wearing a face reminiscent of Edvard Munch's "Scream" had appeared overnight as part of my neighbors' Halloween decorations.

Spooky.

But I wasn't imagining it.

It was there, looking through the window at me and at several oversized pumpkins that must weigh a hundred or so pounds each.

Something you don't expect to see and suddenly do can be eerie. But when it comes to how your eyes work (and how your eyes and brain work together), what you see, at times, might actually be a neurological response—and not really there.

The science of visual perception can be fascinating, and you can have a lot of fun with your kids, students, and friends by exploring (or creating) visual illusions. (How many faces do you see in the tree? That's one that has been going around these days.) But an easy way to learn more about how the eyes work, and how "fatigued" different cones in the eyes may become when staring at something, is to set up a really simple test where you stare at a certain image for a period of time (like 30 seconds) and then glance over at a blank piece of paper. If you really focused your eyes on the initial image for the whole thirty seconds, you should see a version of the image reflected on the blank page—an image that isn't really there. Your eyes seem to be still seeing what they were initially looking at, just in a different color.

Maybe you have tried this with a giant colored circle—or even a small one?


Simple Science at Home

With Halloween coming, I made a mental note to corral the kids into helping with a ghostly version of the "Are Your Eyes Playing Tricks on You? Discover the Science Behind Afterimages!" project so that I could share a Halloween-infused version of the visual perception activity here on the Science Buddies blog. With younger kids, having them draw (or cut out) a large ghost or pumpkin and experiment with afterimages makes sense. My kids are a bit older, and as I thought about testing this with them for the blog, I realized that the directions for the activity (and the sample circle you stare at) at Science Buddies are online... this visual test works both with a digital images or with a sheet of paper in front of you. Given that, I started thinking that maybe I didn't need to force my middle schooler to draw a ghost.

I quickly spiraled down a path of having my student instead set up a digital simulation using Scratch as a way to show how afterimages work and as a way to encourage a bit of Scratch manipulation. Challenged to set up a simple program to demonstrate after-effects using a ghost image and a bit of computer logic to facilitate timing and the automatic changing of screens and display of information to the user, my student created a Scratch program and then took it a step farther, adding in the option for the user to choose an initial background color. This is a cool enhancement and lets you compare what colors you see as an afterimage depending on what colors are in the initial image. Note: in our Scratch version, you are staring at a white ghost, so you don't see a complementary color when you flip to a blank screen. So what do you see? And why? Questions for you to explore!

You and your students can certainly take the Scratch idea even further. You might have the user change the color of the ghost instead of the background. Or, you might add in different levels of color selection to really explore the complementary aspect of afterimages. Or, you could add a storytelling angle to the project: put a backdrop in place on the screen that appears after the user stares at an image, and you will create an interesting animation of sorts—one that partly isn't really there!

We had fun talking about afterimages, putting together the simple Scratch program, and testing it out. I hope you and your students are inspired to give afterimages a try and either experiment with your own Scratch program or make some construction paper ghosts, pumpkins, or bats.

For more information about visual perception, see:

For more information about using Scratch and encouraging kids to explore computer logic with a tool like Scratch, see:


Categories:

 

Saved by the Clot


How does the human body "turn off" bleeding from an injury? Why do some people bleed too much? This October, a cool experiment lets you investigate blood coagulation!

By Kim Mullin

Explore blood clotting and coagulation / blender

Don't Drink the Science

What you mix up doesn't have to be green, but this green combo (it's not a smoothie!) fits in great with Halloween spookiness. The mixture shown in the blender is part of the procedure from the "Blood Clotting to the Rescue: How to Stop Too Much Blood from Flowing" science project. Depending on what you add next, you might end up with little semisolid (gelatinous) balls. Pretty cool science, and a great way to explore coagulation!

Got Blood?

What's the perfect accessory for a frightful Halloween? Fake blood, and plenty of it! Dripping, oozing, spurting—from vampires to gory masks, blood plays a starring role in the scarier side of Halloween. That makes October the right time to get kids interested in a sticky topic—blood coagulation!


Blood Coagulation Keeps Us Safe

We've all had minor cuts and scrapes that bleed, or even a bloody nose. Although it can seem like the bleeding lasts a long time, it does eventually stop. Why? Because it is unhealthy to lose a lot of blood, so as soon as we are injured, our bodies rush into action to form a clot.

Clots are made up of four components: platelets, clotting factors, fibrin, and blood cells. One after the other, these items stick together around the wound to plug it and stop the bleeding. This process is called coagulation. Most people's bodies coagulate blood naturally, but some people have a genetic disorder called hemophilia, and their blood does not coagulate easily. Because the flow of blood may not stop quickly, even minor injuries can be very dangerous for someone with hemophilia.


Coagulation Simulation

If you fell off a skateboard and skinned your knee, you would feel the pain and see blood flow from the scrape. Ouch! But it is tricky to really see blood coagulation in action because the components are so small. When that's the case, scientists sometimes make models to simulate what is happening.

You can make your own blood coagulation model at home! The "Blood Clotting to the Rescue: How to Stop Too Much Blood from Flowing" Project Idea shows you how to do it step-by-step. You'll use an eyedropper to introduce one liquid into another, and you'll end up with tiny little gelatinous spheres! You'll also see what happens when you introduce an anticoagulant into the mix. (Some people take anticoagulant medicine because their blood clots too much.)

As you experiment with your model, think about questions like these: What result would work best for plugging a hole in a blood vessel? What could scientists do to help someone who has a blood disorder like hemophilia?

Vampire or not, our blood is a fascinating topic!



Science Buddies Project Ideas to help students learn more about learn more about diabetes and hemophilia are sponsored by Novo Nordisk.


Categories:

 
Science Buddies Science Activities

Science Buddies Summer Science Roundup




Trending Posts

Family Science

Help With Your Science Project

Your Science!
What will you explore for your science project this year? What is your favorite classroom science activity? Email us a short (one to three sentences) summary of your science project or teaching tip. You might end up featured in an upcoming Science Buddies newsletter!


Archives




You may print and distribute up to 200 copies of this document annually, at no charge, for personal and classroom educational use. When printing this document, you may NOT modify it in any way. For any other use, please contact Science Buddies.