Teachers Parents Students

Recently in Weekly Spotlight


Materials Sciences project to test the strength of eggshells and arches / Hands-on science STEM experiment

In this week's spotlight: a materials sciences family experiment and science fair project that asks you to rethink what you know about eggs. Are they fragile? Or are they strong? If you've ever accidentally stuck your finger through one in the kitchen, you may think you know the answer! But the shape of an egg can support a surprising amount of mass. It is a shape, in fact, that can be found in architecture. How much mass can eggshells hold? Put it to the test with a hands-on science experiment that lets you see how much mass you can stack on top of a set of eggs before they crack.


Categories:

 

Ocean sciences density and salt water project to make an egg float / Hands-on science STEM experiment

In this week's spotlight: an ocean sciences family experiment and science fair project. Some things float in water and some do not. Knowing the density of the object and the density of the water helps explain what is going on, and you can observe and talk about the buoyancy of an object. But adding salt can change what happens. Why? In this hands-on science experiment, you set up a series of dilutions to see at what point an egg goes from sinking to floating in salt water.


Categories:

 

Music science experiment - turn straws into an instrument / Hand-on science STEM experiment

In this week's spotlight: a music-themed family science experiment and science fair project. With a set of ordinary drinking straws, you can create a group straw "oboes." Can you play them? Sure! By blowing air through them, similar to the way you play a reed instrument, you can produce musical notes. At the end of the activity, you should have a set of straws, each of which will play a different note on a musical scale. What is the secret to changing the note each one plays? In this music science experiment, your students will get a chance to explore (and hear) the physics behind the production of sound!


Categories:

 

Zoology science experiment on habitats and environments for pillbug or sowbug / Hand-on science STEM experiment

In this week's spotlight: a zoology family science experiment and science fair project that encourages families and students to observe pillbugs or sowbugs up close by creating cozy but different microenvironments and seeing which the bugs prefer. Although they are frequently found in the soil, pillbugs and sowbugs are not insects; instead, these bugs are crustaceans and breathe with gills.Will this have an affect on which microenvironment they choose? Put it to the test in this easy indoor science experiment that encourages observation skills as students watch to see how the bugs respond to the different microenvironments they create and perform their own bug counts at regular intervals.


Categories:

 

St. Patrick's Day Rainbow with milk, soap, and color science / Hand-on STEM experiment

In this week's spotlight: a family science experiment that lets you and your children make a rainbow in keeping with St. Patrick's Day! What happens when you put drops of food coloring in milk? What happens when you add a bit of dishwashing liquid? Put it to the test in this science activity for a fun, colorful look at the role of a surfactant and how it changes the surface tension of a liquid.


Categories:

 

Carnival Games science / Hand-on STEM experiment

In this week's spotlight: a mechanical engineering experiment and family science activity that takes a scientific look at why a popular carnival game may look easy to win but may, in fact, be really difficult. How does the distribution of mass in the way milk bottles (or plastic bottles of colored water!) are stacked affect how hard or easy it is to knock the bottles over? Put the question to the test with your own home version of a classic carnival game!



Categories:

 

Suspension Bridge science / Hand-on STEM experiment

In this week's spotlight: an civil engineering project that lets students and families experiment with bridge design. You may be familiar with famous suspension bridges like the Golden Gate Bridge in San Francisco, but how does a suspension bridge really work? How do the cables work to support the weight on the bridge? Can a suspension bridge carry a greater load than a beam bridge? With common household materials, you can put your own straw-based bridges to the test. How many pennies can your suspension bridge hold compared to a bridge without cables?



Categories:

 

Seasons science / Earth Axis Science Experiment

In this week's spotlight: an astronomy project that lets students and families use a simple homemade setup to better understand the way the tilt of the Earth's axis causes seasons. When a surface is titled, how does the light reaching it change? With a flashlight, a cardboard box, and some ordinary paper, you can get hands-on and experiment!


Categories:

 

Heart science / Valentines Day Science

In this week's spotlight: a human biology and health project that puts an important question to the test: if you exercise regularly, does your heart recover from exertion more quickly than if you don't exercise often? The heart pumps faster during exercise, which helps to keep the heart healthy. It is good to exercise frequently and to raise your heart rate into its target heart rate zone during exercise, but how long does it take for the heart to return to its normal rate after you are done and cooling down from a workout? How does this recovery time differ between athletes and non-athletes? Put these health questions to the test with family and friends to find out!


Categories:

 

Environmental Engineering Science Project / Weekly Family Science Project Highlight

In this week's spotlight: an environmental engineering and Earth science project and hands-on activity that lets students and families explore what's happening when a landslide occurs. With a simple homemade model using a clipboard and pennies, students simulate how the angle of repose changes with different hill mass and slope surfaces. What happens when you change the materials used in an object sitting on a slope? What's going on with gravity on a slope? At what point does sliding begin and why? Get hands-on to find out!


Getting Hands-on with Earth Science in the Classroom
Teachers: A classroom-friendly version of this Earth science and geology science exploration is available! Science Buddies Classroom Activities offer both educator and student guides to help teachers integrate hands-on learning in the classroom. The Landslides: What Causes Rocks to Slip and Slide? classroom activity takes under 30 minutes to set up and perform—about 10 minutes of student time. A simple setup using pennies and clipboards brings the relationship between gravity, materials, slope, and angle to life for students as they learn more about landslides.

Support for this classroom activity was provided by Chevron, sponsor of Geology resources at Science Buddies.


Categories:

 

Video and Computer Game Pixel Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a video and computer games project and family activity that lets you investigate how the number of pixels used to create a video game object determines how it will look in the game. If you compare older games to new ones, you probably see a big difference in how the characters look today. Which look better? Do you know why? The number of pixels used in creating the images has a lot to do with the differences you see. In this family science activity, you can get create your own video game characters and experiment to see how much detail an image has (and how it looks) at 8 pixels, 16, 32, or even more. What happens as you increase the pixels? Put it to the test with your own graph-paper drawings!

Categories:

 

Electricity Science Project / Weekly Family Science Project Highlight

In this week's spotlight: an electricity project and family activity that takes the zap out of static electricity. What causes the buildup of static electricity and may cause you to get "shocked" when wearing, rubbing up against, or touching certain materials or objects? What does what the object is made of have to do with static electricity? In this project, you and your family can build a cool tool, an electroscope, to detect electric charges and test to see how different materials conduct electricity.

Categories:

 

mammalian biology puppy warmth science Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a mammalian biology project and family activity that encourages families to talk about and explore why puppies and other animals huddle together for warmth. Does cuddling up really increase warmth? Put it to the test in this hands-on science experiment!

Categories:

 

health exercise and sports sweaty science Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a sports science project and family activity that lets you experiment to find out how different activities affect your heart rate. Exercise is important, but do all forms of exercise make your heart work the same? Does your heart work as hard when you are walking as it does when you are jumping on a trampoline or playing a game of basketball? Which activities and exercises really get your heart going? What does it feel like when your heart starts working harder? Put these and other sports and health science questions to the test as a family science experiment!

Categories:

 

Food science kitchen chemistry cornbread baking Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a food science project and family activity that explores the role of baking powder in baking. In this pair of projects, experiment to see the affect of baking powder on corn bread muffins for a clear visual look at what happens when you use more or less in your recipe. Does a light and airy muffin indicate one with or without baking powder? How does the density or weight of a muffin change in relation to the amount of baking powder used? What happens if you use too much? Or not enough?

Categories:

 

 Human Behavior Memory Mnemonics Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a human behavior science project and family activity that explores memory and how using a mnemonic device can help you remember a string of words or the items in a list. Have you ever used the HOMES acronym to help you remember the names of the Great Lakes or ROYGBIV (or Roy G. Biv) to remember the order of the seven colors in a rainbow? In this science project, you conduct a controlled experiment to see whether or not a mnemonic device makes a difference in how well your friends, family members, and other volunteers can remember the list you provide. Does a mnemonic aid work? What kind of mnemonic aid works best?

Categories:

 

Building light-tracking robots as a family activity lets you and your kids take next steps in electronics and circuitry!

Family Light-tracking robotics engineering project with toothbrush robots

My kids and I had a great time over the summer whetting our teeth on basic robotics and electronics by transforming toothbrushes into cute little Bristlebot robots that look and work very much like commercially-available nano or hex bugs. The basic Bristlebots robotics engineering project is a fun hands-on activity and one that works for a wide range of ages. You can read up on our experience and our nitty-gritty tips and insights after doing this family science activity (like using garden shears to snap of toothbrush heads) in the "Building Bristlebots: Basic Toothbrush Robotics" post.

For us, the basic Bristlebots were just a toe in the water. My plan, all along, was to build the much more sophisticated light-tracking bots with my kids, but I liked the fact that we could do the projects in sequence, thus building our skills and understanding of the principles involved. More sophisticated, of course, often translates to more complicated, and, indeed, the light-tracking bots project was a more challenging project. But, without a doubt it was also a more satisfying family project. We like a challenge!

Breadboard diagram for electronics engineering project

Meet Your Bread Board

The project at Science Buddies uses very clear and helpful diagrams like the one shown above to help guide students in placing their parts correctly.

Our red, green, and blue mini bread boards were super cute and cheerful, but only two of them had any numbers and letters printed on them, and one of them had the numbers and letters completely reversed from the diagrams in the project. The procedure at Science Buddies has since been updated to mention that breadboard layouts and on-board descriptors may vary, but it gave us something to talk about as we read through the directions and got ready to follow the steps of the procedure. Did it matter? Did we need to reverse the circuit diagrams on the one board? Tip: If your breadboard doesn't have the same (or any) numbers or letters, just follow the diagrams at Science Buddies so that your circuit visually matches the one shown in terms of placement for each element.

The basic Bristlebots are super cute, super easy, and fun to make, but with slightly older kids in the family science setting, the light-tracking bots proved an excellent choice for us. They take longer to build. They involve a circuit beyond just a battery and a motor. They have cool functionality that lets kids put their own or a parent's phone flashlight app to use. They can be used as the foundation for extending the project and learning opportunity by challenging kids to alter (or reverse) the functionality. And, maybe best of all, they sport a very handy on-off switch! Plus, they are very cute and have a lot of personality even in their barebones wires and parts. (Revving up the design once you get the bots working is not required but can add to the creative fun for kids who want to customize and personalize their bots.)


Cool Parts

I had never used a bread board when I ordered all my supplies for this project and then gathered the kids around the table a few days after we made our original Bristlebots. Doling out the required materials for three kids to work on building these little robots was exciting. There were lots and lots of resistors, three awesome kits of colorful jumper wires, photoresistors, MOSFETs, battery packs, switches, pancake batteries, and more. There was a lot going on, and we were excited to get started.

While I recommend doing this build start to finish, family science sometimes follows the stop-and-go patterns of daily life. We split our build into two sessions, working around an important game of laser tag. Before we got started, everyone read the full procedure, and then we were ready to get hands-on. We knew we were not going to finish in one sitting, but the kids worked through the first several steps of the procedure, enough to give me a sense of how well the kids were going to do with following the diagrams and pushing the small pieces into place. Tip: If you have to start, stop, and come back to finish, be sure you stop with everyone having completed the same step!

When we came back later, we picked back up where we left off.


Excellent Diagram-led Build

The procedure at Science Buddies for this project is excellent. The team did a great job guiding students through the steps and providing helpful diagrams and photos to show the circuit as it develops on the bread board. (See the sample bread board diagram in the sidebar at the right.) Going into the build, I didn't have any prior knowledge of drains and gains, and my own understanding of how the rows and columns of the breadboard were related to the drain and gain didn't form immediately. Even so, if you follow the steps, putting the elements in place on the circuit step-by-step, as directed, you can do (or lead) this robotics project! (Note: Students who are working on the project as an independent project for the science fair or for a school project will want to really dig into the meaty information in the introduction, but families and science moms can approach these bots just as a fun hands-on building activity. You and your kids will be learning along the way, but don't worry up front about whether or not the circuit diagrams make sense to you!)


Follow the Directions

While doing this project, your kids will need good fine-motor skills and close attention to detail to make sure they get things inserted in the proper slots and inserted firmly. Be prepared to help with some tiny parts and to help check and double-check that pieces are in the right spots. If, like us, you are not soldering but relying on twisting battery wires to jumper cables, be prepared for a process that may feel like micro surgery with the very tiny battery wires. (Note: An adult will probably need to do this, but twisting does work.) If everyone follows the diagrams closely, building these bots can feel a lot like building a LEGO® project!

Even when you are careful, however, things sometimes go wrong. It's good to keep that in mind going into any family science activity. Things happen! Learning to deal with problems that arise in a science or engineering project is part of the process, and when something goes wrong in an electronics project, there is ample room for tinkering and emphasizing troubleshooting and testing steps.


A Bit of Resistance

Resistors can look alike / be careful to choose the correct value!

Look Closely

We initially selected the wrong resistors from the multipack, and it took us a while to realize our mistake. Be sure to look carefully to make sure you get the right value resistor!

We ran into a few trouble spots in the process of building our bots, one of which almost completely derailed us. As a result, we got a lot of practice troubleshooting, and we learned a great deal from the mistakes we made. The "help" information in the project was a great source of assistance when things didn't work out with our bots. When one of our bots got super hot (even though it wasn't moving), for example, we got a crash course in the importance of ensuring none of the bare wires are accidentally touching. And when none of our bots "worked" after we finished our circuits, we spent a lot of time backtracking through the diagrams and double-checking to ensure we had every single thing exactly as shown in the circuit.

There was some frustration, mine included, when we could not pinpoint what was wrong. Our circuits looked fine, but we had three cute little bots and bedecked circuit boards that didn't work. Finally, we discovered our error. It was a simple error, but it was a critical error.

The kids were ready to give up and move on, their excitement a bit burnished, when we discovered the problem.

Because we were making several bots, I ordered the large multipack of resistors listed as an option in the project's list of materials. The pack of 500 includes resistors in varying values. Unfortunately, even though we thought we had carefully matched up and interpreted the band-coding used to identify the values and to pull out the one we needed, our inexperience with resistors threw us a wrench. It took us a very long time to determine that we had accidentally selected 47 kΩ resistors instead of the required 4.7 kΩ ones.

As you can imagine, with the wrong resistors, there was far too much resistance, and nothing was making it through the circuit. For a seasoned electronics project parent, it sounds like a silly error. But in the moment, and with no experience with resistors other than when a science kit (like the Crystal Radio Kit) comes with only and exactly the one you need, I had no idea I had misinterpreted the packaging of the resistors and values. (I had not even noticed that there was another very similar-looking value in the set.)

Once we swapped out the too-strong resistors for the right ones, we were in light-tracking toothbrush bot business.


Light-tracking Success!

Once we had everything on track, the light-following bots worked great and were super fun to lead around with cell phone flash lights or other lights. The kids were very excited to see the bots come to live once we swapped out the resistors, and they immediately grabbed a cardboard box lid, turned out all the lights, and started guiding the bots around with cell phone lights. There were some races and then some impromptu videos made of the robots they had made, bots that, really, look pretty impressive when finished and definitely warranted being shown off to friends and family.

This is a project I highly recommend you consider with your kids over the long winter break or for weekend fun. Don't be afraid of the "advanced" rating on the project in terms of difficulty. If your goal is simply to build the bots and not take a crash course in understanding circuit diagrams, you can do and succeed with this robotics project with your kids—without any prior electronics or robotics experience. You know your kids best, but I was successful doing this project with kids in the range of 8-13 years.

If you have a family tradition of giving things "to do" during the holidays or for other celebrations, consider boxing up the supplies for the "Build a Light-Tracking Robot Critter" project for a special kid who likes to tinker!


Make Family Time Robotics Time

If you are interested in trying a robotics project with your kids, here are a trio of robotics engineering projects, from beginner to advanced, to consider:

The following blog posts and resources may also be helpful and inspiring for families interested in exploring robotics:


Share Your Family Science or School Science Project

What did your recent science project or family science activity look like? If you would like to share photos taking during your project (photos like the ones above or photos you may have put on your Project Display Board), we would love to see! Send it in, and we might showcase your science or engineering investigation here on the Science Buddies blog, in the newsletter, or at Facebook and Google+! Email us at blog@sciencebuddies.org.


Categories:

 

Tastebuds Human Health Science Project / Weekly Family Science Project Highlight

In this week's spotlight: a human biology and health science project and family activity that encourages you and your family to investigate the science of taste! Do your taste buds differ from those of your friends, siblings, or other family members? Probably! In this project, you conduct a scientific experiment to explore your taste threshold for things that are salty, sweet, or sour. Once you've analyzed your own taste buds, see how other family members and friends compare!

[Image: Wikipedia]

Categories:

 

Weekly Science Activity Spotlight / Cranberry Sauce Science Project for School or Family Science

In this week's spotlight: a food science project and family activity perfect for the holiday kitchen! Are cranberries a part of your holiday menu? Does your family like a wiggly, solid cranberry roll, or do you make a looser cranberry sauce. What causes the difference in consistency? In these hands-on science projects, you and your family can experiment to see how cooking time affects the natural pectin in cranberries.

Categories:

 


In this week's spotlight: a food science project or family activity that adds a dash of salt to questions about health and nutrition. The salt in your family's table shaker may be iodized because iodine is an important micronutrient that not everyone gets naturally in the foods they eat. To help prevent iodine deficiency, many salts contain added iodine (in the form of iodide). Not all salts are iodized, however. In this pair of projects, families experiment to see which salts contain iodide. The label should tell you if the salt contains iodide, but these projects let families use a visual test to observe the chemical reaction that occurs if iodide is present. Does what you see match what the label tells you?

Categories:

 

Weekly Science Activity Spotlight /  Science Project for School or Family Science

In this week's spotlight: a sports science project that invites students and families to examine the relationship between walking pace and height. Do you have to walk faster or slower to keep up with a friend or family member? How is that related to how tall each of you is, and why? Can you estimate how tall someone is by how many steps they take to cover a certain distance? Put this question to the test with a simple hands-on science experiment and learn more about special ratios that can be used to talk about the human body.

Categories:

 

Weekly Science Activity Spotlight /  Zoology Camouflage Science Project for School or Family Science

In this week's spotlight: a pair of zoology science projects that let students and families explore how some animals use camouflage so they can better blend in with their surroundings. Does camouflage really make a difference when it comes to the relationship between predators and their prey? Give it a try in fun hands-on science activity using M&M® and Skittles® candies. If you are a hungry predator trying to grab a specific color of M&M, how hard will it be to find your prey if the prey blends in with its Skittles surroundings? Experiment to find out!



Categories:

 


In this week's spotlight: a pair of physics science projects that invite students and families to explore the granularity of materials. Can you pour candy in a way that is similar to pouring water? What determines whether or not a material can "flow" in this way? Which variables affect how smoothly the material flows? With your Halloween candy bag at hand, you can put it to the test with your own "candy waterfall" in these hands-on science project and family science activities.

For other Halloween-related science suggestions, see: Time for Spooky Halloween Science.

Categories:

 

Weekly Science Activity Spotlight / afterimages Science Project for School or Family Science

In this week's spotlight: a trio of human biology and health science projects that invite teachers, families, and students to explore the way the human eye works. What happens when you stare at something for a period of time and then look away? You might continue to see the image, what is called an afterimage. We have versions of this exploration for an independent student project, a family activity, or a classroom activity!
2013-blog-scratch-visual-afterimages-trio_small.png



Science Connections for Halloween

For another look at afterimages and thoughts on tying this hands-on science to Halloween and to nudging your students to experiment with Scratch to make a simple computer program to demonstrate afterimages, see: "A Trick of the Eye for Halloween."

Scratch is a great way to get kids started exploring computer logic as they create fun games or applications. (See the post for additional links to resources and Project Ideas at Science Buddies!)


Categories:

 


In this week's spotlight: a pair of environmental science projects that help guide families in an investigation of different biodegradable and compostable items. Do all environmentally-friendly items decompose at the same rate or as completely? With a homemade indoor composter, you and your students can run your own experiment and see what happens.

Categories:

 

Weekly Science Activity Spotlight / falling objects physics Science Project for School or Family Science

In this week's spotlight: a pair of physics science projects that encourage families and students to put a classic question to a hands-on test. Does a heavier object fall faster than a lighter one if both are about the same size? What role do gravity and inertia have in explaining what happens when two objects of differing weights are dropped at the same time from the same height? Put it to the test!

Categories:

 

Weekly Science Activity Spotlight / bird feed adaptations zoology Science Project for School or Family Science

In this week's spotlight: a pair of zoology science projects that encourage families and students to use their observation skills to learn more about birds. What can you deduce about a bird's lifestyle or habitat by looking at its feet? More than you might think! Both the independent science project and the family science version guide students in an engaging bird feet scavenger hunt. The closer you look, the better, so pack a picnic lunch and head to a nearby park or pond for some bird watching! How many different types of bird feet will you spot?

Categories:

 

A deck of cards provides a concrete look at probability and chance in a hands-on math activity that easily scales up and down in difficulty to match the experience of your students.

Family math probability card science


A Deck of Cards

Four suits. Thirteen cards in each suit. Twelve face cards. Four aces. Twenty-six red cards. Twenty-six black cards.

Using these simple facts about a deck of cards, many math questions and scenarios rise to the surface!

How likely is it that you will draw an ace from a full deck of cards? Depending on your age, this is simple math. But it is also simple probability. What are the odds that you will draw a face card? How about a two? One-eyed jack?

The interesting thing about probability is that it is exactly that, a measurement of what is "likely" based on the math of the situation. It is not, however, an absolute. Just because your odds of drawing a red jack are 1 in x, it doesn't mean that if you draw x cards you are guaranteed to draw a red jack. But, based on the math, it is probable, or likely, that you will.


Family Math

Over the summer, I set a few kids of varying ages up with a deck of cards each and put them to the task of "testing" what they know about probability in relation to a deck of cards to see how well the "chance" of drawing a certain kind of card holds up.

Because the goal was a short family math activity, we used the "Pick a Card, Any Card" project as a guide and foundation. The Science Buddies Project Idea is one with a low level of difficulty, a project geared toward younger students. There is also a family-friendly adaptation of the project at Scientific American in the Bring Science Home area.

Because of the age range of the kids I had on hand, and their differing levels of interest in, and comfort with, math, we talked first about what we already "knew" about the odds of drawing different types of cards (or specific card numbers), and they each marked their data charts with the odds of drawing each different number or type of card based on the pure math at hand. With a younger group of students, your approach might be different, and the entire activity might be revelatory rather than a proving ground.

For these kids, fairly well versed in games like gin rummy, spades, and hearts, the activity was a way of putting the math to the test. They knew that the odds of drawing an even-numbered card are 1 in 2 (if you count the face cards as odd or even based on their "number" in the sequence from 1-13), but does it really work out that way? Does it work out that way enough of the time to make probability make sense?

After each did their trials, we figured up the percentages and compared them to the mathematical odds we'd already deduced at the outset. It was a simple but fun hands-on activity and a nice foundational activity for talking more about statistics.

Looking for other hands-on math you can do with your students as a way of getting extra hands-on math into their days and into your family time? Check out the following Project Ideas or browse the full math area at Science Buddies:

What did your family science activity look like? If you would like to share photos you snapped while doing family science, we would love to see! Send one in, and we might showcase your family math, science, or engineering investigation here on the Science Buddies blog, in the newsletter, or at Facebook and Google+! Email us at blog@sciencebuddies.org.




Science Buddies Project Ideas and resources for hands-on math are supported by the Motorola Solutions Foundation.

Categories:

 

Weekly Science Activity Spotlight / Winogradsky biosphere column Science Project for School or Family Science

In this week's spotlight: a pair of environmental science and geology projects that let families and students investigate a biogeochemical cycle, a kind of reuse and recycling process that helps support an ecosystem. In either the independent science project or the family science version, students create and cultivate a miniature biosphere, called a Winogradsky column, to explore the relationship between available nutrients and the microorganisms that grow in a sample of soil.

Categories:

 

Weekly Science Activity Spotlight / Rooftop Gardens Science Project for School or Family Science

In this week's spotlight: a pair of environmental engineering science projects for a hands-on look at the benefits of taking a rooftop approach to going and growing green. Can rooftop gardens help you keep your house cooler and lower your energy bill? Explore with a student science Project Idea or a hands-on family science activity:

Categories:

 

Weekly Science Activity Spotlight / Chemical Reaction and Temperature Science Project for School or Family Science

In this week's spotlight: a trio of chemistry science projects for fizzy, science fun. When you drop an Alka-Seltzer® tablet into water, a chemical reaction begins. What influences the rate of this reaction? Explore the role of temperature on the reaction with the student science Project Idea, a hands-on family science activity, or a classroom activity:

Categories:

 

Weekly Science Activity Spotlight / Full Moon Illusion Science Project for School or Family Science
(Moon rise image credit: Thomas Fietzek, Wikimedia Commons)

In this week's spotlight: a pair of human biology and health science projects to help students and families better understand the way our eyes perceive the full moon rising. If you have noticed that a full moon sometimes seems very big and then smaller as it rises, you have seen the full moon illusion in action. Learn more about Emmert's Law and experiment to find out why and how our perception of the moon's size changes based on where it is in the sky:


Take It Further

By the way, this week's full moon (on Tuesday, August 20) was also, technically, a Blue Moon, a label which has nothing to do with the color and a lot to do with the old adage we often hear and use of something happening "once in a blue moon"! Find out more about the history and science of the Blue Moon in this article at Space.com. See also: "When the Moon Is Full (Or Seems to Be)" and "Visual Illusions: When What You See Is... Not What's There?" on the Science Buddies Blog.

This cool video by photographer Mark Gee gives a great look at a few minutes of a stunning moon rise in Wellington, New Zealand. Will the moon look so big once it is fully risen? Did it actually change? That's what this week's science activity highlight is all about!

Full moon Mark Gee Video Screenshot

Categories:

 

Weekly Science Activity Spotlight / Meteors, Craters, and Astronomy Science Project for School or Family Science

In this week's spotlight: a pair of astronomy science projects perfectly timed for this year's peak Perseids meteor shower activity. Most meteors that pass through the Earth's atmosphere burn up before they hit the ground. But what happens when a meteorite hits? In this pair of hands-on science activities, students and families experiment to find out how the size of a meteorite is related to the size of the resulting crater.

Categories:

 

Weekly Science Activity Spotlight / Bugs and Insect Biodiversity Science Project for School or Family Science

In this week's spotlight: a pair of science projects for buggy, backyard exploration. What does it mean for an area to be have a lot of biodiversity? Why is this important to the health of an ecosystem? How do scientists measure biodiversity? You can explore by doing a study of the biodiversity of insects in your own backyard using a homemade bug collector. This week's hands-on science project and activity guide either an independent project or a family investigation. How many types of insects will you suck into your bug collector?

Categories:

 

Weekly Science Activity Spotlight / Fruit and Gelatin Hands-on Science Project for School or Family Science

In this week's spotlight: a pair of science projects from the kitchen. Is a gelatin-based fruit salad in your recipe book of family favorites? What fruit do you add? Will any fruit work? Put it to the test with this week's hands-on science exploration and investigate what the enzymes in certain fruits have to do with whether or not a gelatin will solidify properly when a fruit is added.

Categories:

 

Weekly Science Activity Spotlight / Hula Hoop Hands-on Science Project for School or Family Science

In this week's spotlight: a pair of science projects perfect for burning off some energy and getting your "spin" on. What is the secret to a good hula hoop? Experiment with the weight and size of different homemade hoops to see how each affects your ability to keep a hoop in motion. What's the best combination? Can you hula hoop longer with a lighter or heavier hoop? Why?

Categories:

 

Weekly Science Activity Spotlight / Film Canister Rockets with Chemical Reaction Hands-on Science Project for School or Family Science

In this week's spotlight: a pair of projects that fit right in with U.S. 4th of July celebrations and let you get hands-on with "rocket" science at any time of the year. What happens when you combine vinegar and baking soda? A chemical reaction! If you contain the reaction in a small space like a film canister, you can get a high-flying blast from the combination—your own mini rocket. But how much of each ingredient do you need? Experiment with the ratio of vinegar and baking soda to find the perfect mix for the highest-flying fun as you and your family explore Newton's third law of motion, combustion, and chemical reactions.

Categories:

 

Weekly Science Activity Spotlight / Where's Waldo Visual Exploration Hands-on Science Project for School or Family Science

In this week's spotlight: a pair of projects that investigate the science behind visual search. When you are looking for a specific car in a crowded parking lot, what makes it easier or more difficult to spot the car? What if you are looking for your keys, someone in a crowd, or something specific on the shelves at the grocery? Do you enjoy puzzles and seek-and-find style books and games that make a game or visual brain teaser out of "finding" something that is hidden in plain sight. like Where's Waldo or I Spy?


What makes some objects harder to find than others or some I Spy books more challenging than others? Explore the science behind visual search by making your own puzzles, either using an online tool or by making hands-on, cut-it-out and glue-it-down (or draw it with markers) puzzles that you and your family can enjoy! From the number of distracters to the colors and size of them, there are plenty of angles to explore. This is a great summer science activity for the whole family!

Categories:

 

Weekly Science Activity Spotlight / Shaking Butter Hands-on Science Project for School or Family Science

In this week's spotlight: a pair of projects that investigate the science of butter-making, a process you might even call butter-shaking! In these hands-on food science projects and activities, students make their own butter and investigate to find out what role (if any) temperature plays in the process. You and your family can shake up some butter to use with tomorrow's breakfast, but will you have better luck using cold or room-temperature cream? Get shaking to find out!

Categories:

 

Weekly Science Activity Spotlight / Family Pedigree Traits Genetics Science Project for School or Family Science

In this week's spotlight: a pair of projects in honor of Father's Day and the science of family traits. In these hands-on genetics projects and activities, students investigate a family pedigree to see if they can determine whether traits are dominant or recessive. Do you and some (or all) of your family members share certain physical traits? Is a widow's peak passed down from generation to generation? Find out!


Categories:

 

Weekly Science Activity Spotlight / M&M math and statistics Science Project for School or Family Science

In this week's spotlight: a pair of projects that put statistics in the palm of your hands. In these hands-on math projects and activities, students investigate to find out how often each color of M&M appears in a bag or group of bags. Have a guess as to which color appears most often? Put your guess to the test! What is the likelihood of pulling a yellow M&M from a brand new bag? After this activity, your student will be able to give you the odds—with some statistics to back them up!



Tip: These math-based activities can make for great summer break fun! Extend the exploration with other kinds of candies or compare data from small samples and larger samples. Just be sure no one eats the samples before the counting is done!

Categories:

 

Weekly Science Activity Spotlight / Hot Dog Mummification Science Project for School or Family Science

In this week's spotlight: a pair of projects that bring the science behind Egyptian mummification into the kitchen or classroom. In these hands-on human biology projects and activities, students (and families!) simulate the process of mummification with a hot dog and baking soda. What does a mummified hot dog look like after seven days? After fourteen? Better yet, how does it smell! Experiment to find out what's really going on when something is mummified.



Categories:

 

Weekly Science Activity Spotlight / Flower Pigment Chromatography Project for School or Family Science

In this week's spotlight: a pair of flower power projects, perfect for spring and Mother's Day! Paper chromatography is used to help separate a solution into its components. In these hands-on science activities, paper chromatography lets students see what makes up the "colors" of flowers. Are all red flowers the same in terms of pigment? Pluck a few petals and find out!

Categories:

 

Weekly Science Activity Spotlight / Crazy Crystals Chemistry Project for School or Family Science

In this week's spotlight: a pair of projects that extend a classic chemistry exploration—growing crystals. Growing crystals makes for excellent and engaging hands-on, kitchen science that can be enjoyed by all ages, but what determines the size of the crystals? Explore the relationship between temperature and crystal formation in these science project and activity procedures:



Categories:

 

Weekly Science Activity Spotlight / Flipbook Animation and Visual Illusion Science Exploration for home or school

In this week's spotlight: a pair of projects that explore the way the brain interprets a series of images. Both traditional cartoon animation and stop motion animation (like claymation) rely on the brain viewing a sequence of images as "in motion." By creating easy and fun flip-book animations, you and your students can explore how this optical illusion works—and how much information the brain can "fill in" and still perceive motion. These science project and activity procedures guide you through either an independent student project or a fun family exploration:


Categories:

 

Weekly Science Activity Spotlight / Balance Anything Marshamallows Physics Science Project

In this week's spotlight: a pair of projects that put your understanding of balance to the test! What makes some things topple and other things stable? Use marshmallows and wooden sticks to explore how the distribution of an object's mass determines how the object will balance. You can investigate using these science project and activity procedures:


Categories:

 

2013-blog-weekly-science-activity-spotlight-candy-chromatography.png
In this week's spotlight: a pair of projects perfect for putting a portion of your kids' candy piles to scientific use! Use paper chromatography to explore the colors in candy coatings:



Categories:

 

Soft boil Eggs / science Activity Family Science Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of eggy projects that are just in time for more Easter-inspired science with your family! Explore the soft boiling of eggs in our updated cooking and food science project and in the family-friendly activity at Scientific American's Bring Science Home.


Categories:

 

Tie Dye Easter Eggs / science Activity Family Science Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of art-meets-chemistry projects perfect for Easter-inspired science with your family! Explore the process of using silk ties to dye eggs in our updated chemistry project and in the family-friendly activity at Scientific American's Bring Science Home.


Categories:

 

Cabbage Cloning Growing science Activity Family Science Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of green-thumb projects straight from the pages of science fiction! Growing a cabbage plant from a piece of cabbage is a great way to explore one kind of plant reproduction and the process of plant cloning. But what piece of the plant do you use? Explore plant cloning in our updated plant biology project and in the family-friendly activity at Scientific American's Bring Science Home.


Categories:

 

Weekly science activity spotlight / Colloids and Mixtures / family science
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a hands-on kitchen science investigation. What happens when you mix sand and water and how does the resulting mixture compare to a mixture of cornstarch and water? Learn more about mixtures, solutions, and colloids in this pair of fun, tactile science projects:


Categories:

 

Paper Airplane science Activity Family Science Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of paper airplane science projects that turn ordinary paper airplane folding and flying into a fun hands-on science activity. Explore the effect of drag on flight in our updated aerodynamics project and in the family-friendly activity at Scientific American's Bring Science Home.


Categories:

 

Tie Dye Chemistry Activity Family-Science Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of science projects related to a favorite summer or camp activity—tie dye. Don't miss our freshly updated hands-on chemistry project and a family-friendly version at Scientific American's Bring Science Home.


Categories:

 

Weekly Science Project and Science Activity Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


This week's spotlight pays tribute to Valentine's Day with a trio of health and human biology science projects that let students better understand how the heart works and how doctors can listen in to monitor a person's heart beat. Our hands-on science Project Idea guides independent student exploration. The classroom activity assists teachers with a short and easy to prepare classroom activity. And the new activity at Scientific American's Bring Science Home offers a related, family-focused exploration, perfect for home!





Science Buddies resources in health and human biology are sponsored by the Medtronic Foundation.



Image: Bigstock

Categories:

 

Weekly Science Project and Science Activity Spotlight
Are you looking for a school science project topic or a hands-on science activity to do on the weekend or with your family? Science Buddies' science projects come in all sizes!


In this week's spotlight: a pair of science projects that enable student and family exploration of left- and right-side dominance. Don't miss our newly updated hands-on science Project Idea for student exploration of this health and human biology topic and a related, family-focused, home activity at Scientific American's Bring Science Home.






Image: Bigstock

Categories:

 

Popular Posts

Help With Your Science Project

Family Science

Your Science!
What will you explore for your science project this year? What is your favorite classroom science activity? Email us a short (one to three sentences) summary of your science project or teaching tip. You might end up featured in an upcoming Science Buddies newsletter!


Archives




You may print and distribute up to 200 copies of this document annually, at no charge, for personal and classroom educational use. When printing this document, you may NOT modify it in any way. For any other use, please contact Science Buddies.