Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Jack It Up! Lift a Load Using Hydraulics

Difficulty
Time Required Long (2-4 weeks)
Prerequisites None
Material Availability Syringes, which are needed for this project, can be ordered online. See the Materials and Equipment list for details.
Cost Average ($50 - $100)
Safety Since minor injury is possible, use caution when using a tool such as a saw. Be sure to wear safety goggles when using tools. Use epoxy in a well-ventilated area and follow all of the safety recommendations on the package. Adult supervision is required.

Abstract

Can you lift a car? No? You say you are not strong enough? True, our bodies are not built to lift heavy loads like cars. Fortunately, our brains are smart enough to harness the power of fluids, like water and oil, to create hydraulic lifts. By pushing a button on a hydraulic lift, a mechanic can easily raise a car with one finger. Lifts can also be used to raise lots of other heavy loads - even such massive things as steel girders to construct a skyscraper! In this mechanical engineering project, you will get a firsthand look at the power of a hydraulic system by building your own working model of a lift.

Objective

To apply the principles of hydraulics in building a working model of a hydraulic lift.

Credits

Michelle Maranowski, PhD, Science Buddies

Cite This Page

MLA Style

Science Buddies Staff. "Jack It Up! Lift a Load Using Hydraulics" Science Buddies. Science Buddies, 16 Feb. 2013. Web. 1 Oct. 2014 <http://www.sciencebuddies.org/science-fair-projects/project_ideas/ApMech_p048.shtml?from=Blog>

APA Style

Science Buddies Staff. (2013, February 16). Jack It Up! Lift a Load Using Hydraulics. Retrieved October 1, 2014 from http://www.sciencebuddies.org/science-fair-projects/project_ideas/ApMech_p048.shtml?from=Blog

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2013-02-16

Introduction

What do a wheelchair lift, an excavator at a construction site, and a dentist's chair have in common? The ability to lift a heavy load. And in all of these examples, the ability is due to the power of hydraulics.

Hydraulics is the study of liquids and their mechanical properties: for instance, how they move, resist movement, act when subject to pressure, and so forth. In engineering, one application of hydraulics is using liquids, like water and oil, to move things. Why use a liquid to move things, instead of, say, air? One important reason is that a liquid is incompressible, which means that if you press on it, you cannot change its volume. For example, if you have a cup filled with marshmallows, you can fit even more marshmallows into the cup by compressing (squeezing) the marshmallows together. But if the glass is full of water, there is no way you can fit more water into the cup - no matter how hard you squeeze! Since liquid is incompressible, applying a force (for example, a push or a pull) to one end of a hydraulic system transmits (passes along) the force through the liquid to the other end.

A force spread out over an area, or a force divided by an area, is called pressure. Pushing on the top of a glass of water is putting pressure on the water. Another way of thinking about pressure is to imagine yourself pushing on an object with your finger or with the palm of your hand. In both cases, you are applying the same force, but the pressure is different because the area of the tip of your finger is much smaller than the palm of your hand. Figure 1 below shows a simple hydraulic system that uses the concepts of force and pressure.

This simple hydraulic system has two pistons in cylinders on the top
Mechanical Engineering science project
Figure 1. This simple hydraulic system has two pistons in cylinders on the top.

The hydraulic system in Figure 1 is made up of a liquid-filled tube topped with two pistons. Applying a downward force on this closed system (in this case, pushing down on the left-hand piston) causes the liquid to move against the right-hand piston and, because the liquid is incompressible, push the piston up. Since the liquid is incompressible, the pressure in the liquid is the same at every point within the liquid. When the energy from the force applied to one piston is transferred to the liquid and gives its energy to move the second piston, we say that work has been done to the liquid by the first piston. Hydraulic machinery, like wheelchair lifts and car jacks, use liquids to do work. That work can be applied to performing big jobs like lifting heavy loads.

An advantage of hydraulic tools is the concept of force multiplication. Force multiplication enables the force you apply to one piston to be multiplied, by a multiplicative factor, to make a larger force acting on the second piston. This only works if the first piston is smaller in area than the second piston. If we take the simple hydraulic system mentioned above and alter it to use force multiplication, it will look like Figure 2 below.

This simple hydraulic system
Mechanical Engineering science project
Figure 2. Simple hydraulic system with pistons of different areas. The piston with the smaller area is called the master and the piston with the larger piston is called the slave. The difference in areas enables force multiplication.

When the master (smaller) piston is pushed in, the amount of force applied to the slave (larger) piston by the liquid is multiplied by the ratio of the area of the slave piston to the area of the master piston. This relationship is derived below in Equations 1-3.

Equation 1.
Pressure at slave piston = Pressure at master piston
  • Pressure is in units of newtons/area
  • Area is in units of centimeters [cm] squared

Since pressure is force acting over an area, Equation 1 is transformed into Equation 2.

Equation 2.

 Fs     Fm 
——  =  ——
 As     Am 

  • Fs= Force applied by liquid on slave piston (in units of newtons, N)
  • Fm=Force applied to liquid by master piston (N)
  • As= Area of slave piston (cm²)
  • Am= Area of master piston (cm²)

In Figure 2, the area of both pistons is a circle and the area of a circle is πr2, where r is the radius of the circle. Using this fact, Equation 2 is transformed into Equation 3, to find the force applied by the liquid on the slave piston.

Equation 3.
Force on slave piston = Force applied by master piston x (area of slave piston/area of master piston)

 Fs   =   Fm  (  πrs2
——
 πrm2
)

  • Fs= Force applied by liquid on slave piston (N)
  • Fm=Force applied to liquid by master piston (N)
  • rs= radius of slave piston (cm)
  • rm= radius of master piston (cm)
  • π= pi (approximately 3.14)

The ratio of the areas of the two different pistons in Equation 3 is called the multiplicative factor. Using Equation 3, the force on the slave piston in Figure 2 is four times the force applied by the master piston. So if the master applies 1 N of force to the liquid, the liquid's force on the slave is 4 N. The only issue is that the master must be pushed down 4 cm while the slave rises only 1 cm.

Force multiplication is the reason hydraulic machinery is so useful. A small force from the operator on one end is multiplied and results in a much larger force on the other end of the machine. Construction machines like excavators and forklifts use the force multiplication of hydraulics. Often these machines have hydraulic cylinders. A hydraulic cylinder is made up of a piston and a cylinder that houses the piston and the hydraulic liquid.

In this mechanical engineering science project, you will build three model hydraulic lifts and demonstrate the concept of force multiplication using syringes with different radii. The syringes act as hydraulic cylinders. The plunger of the syringe acts as the piston in the hydraulic cylinder. A real life example of a hydraulic lift is a vehicle wheelchair lift, like the one shown in Figure 3. What will be the maximum weight each model lift can raise? Will the maximum weight change if you change the size of the slave piston?

A handicapped child can safely enter a vehicle using a hydraulic wheelchair lift
Mechanical Engineering science project
Figure 3. A handicapped child can easily and safely enter a vehicle using a hydraulic wheelchair lift, as shown in this image.

Terms and Concepts

  • Hydraulics
  • Incompressible
  • Force
  • Area
  • Pressure
  • Piston
  • Energy
  • Work
  • Force multiplication
  • Newton
  • Radius (radii)
  • Multiplicative factor
  • Hydraulic cylinder
  • Hydraulic lift
  • Diameter

Questions

  • What is force? What units is it measured in?
  • How is force related to work and energy?
  • What are some examples of liquids used in hydraulic systems?
  • What is the most important property of a hydraulic fluid or liquid?
  • Could air be used to lift loads instead of liquid? Why or why not?
  • What is the difference between the master piston and the slave piston?

Bibliography

Materials and Equipment

  • Wall plates, blank, stainless steel (3). You can purchase blank wall plates from a hardware store. Minimum size: 4.5 x 2.75 inches
  • Phillips screwdriver
  • Syringes, 12 cc, catheter tip (4). You can purchase 12 cc syringes from www.amazon.com.
  • Syringe, 35 cc, catheter tip. You can purchase a 35 cc syringe from www.amazon.com.
  • Syringe, 60 cc, catheter tip. You can purchase a 60 cc syringe from www.amazon.com.
  • Optional: Hacksaw
  • Optional: File. You can purchase a file from a hardware store.
  • Utility knife
  • Epoxy. You can use either Elmer's® superfast epoxy cement or Devcon 5 minute epoxy.
  • Paper plates (3)
  • Disposable spoons (3)
  • Optional: Plumber's putty
  • Vise, 4-inch. You can purchase a vise from a hardware store or online at www.amazon.com.
  • Metric weight set or a variety of materials of varying weights that can be used for testing. You can borrow a metric weight set from your school's science laboratory. Borrow a 500-gram weight, a 200-gram weight, two or three 100-gram weights, and several smaller weights to start.
  • Digital scale, if you are not using a set of standard weights. You can purchase a digital scale online at www.amazon.com.
  • Silicone fuel tubing, 5/32-inch inner diameter (3 feet). You can purchase silicone fuel tubing from www.amazon.com or from a hobby shop.
  • Glass of water
  • Ruler
  • Adult volunteer
  • Lab notebook
  • Graph paper

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

Building the Model Hydraulic Lifts

  1. In this project, you will build three model hydraulic lifts using syringes with pistons of different areas and metal wall plates. The syringes act as hydraulic cylinders.
    1. First you will build the model lifts, which involves attaching the top of a slave syringe's piston to the back of a metal plate with epoxy and then connecting the master syringe to the slave syringe with tubing.
    2. Every lift will have a 12 cubic centimeter (cc) master hydraulic cylinder but each will have one of three different slave hydraulic cylinders: 12 cc, 35 cc, and 60 cc.
    3. You will use water as the hydraulic fluid.
  2. Prepare the metal plates. The metal plates will hold the weights while the slave piston will lift the plate and the weights. Using the Phillips screwdriver, remove the screws from both ends of all three of the blank wall plates. Discard the screws.
  3. Prepare the syringes to attach to the metal plates. Make sure that the tops of the pistons in the syringes are flat because they will be epoxied to the back of the metal plates, and they need to be flush against the plates.
    1. Larger syringes may have rings on the piston. If a piston has a ring on it, then use the hacksaw to remove it. File down the remains of the ring, so that the top of the piston is as flat as possible, as shown in Figure 4. Ask an adult volunteer to help you remove the ring.
    2. If the 12 cc syringes have a curved tip, then cut the curved tip off with the utility knife so that the remaining tip is straight. Cutting off the curved tip makes it easier to push into the tubing.
Two 60 cc syringes
Mechanical Engineering science project
Figure 4. Two 60 cc syringes, one shown with the original ring (left) and one shown with the ring removed (right).
  1. Epoxy the top of one 12 cc, 35 cc, and 60 cc syringe each to a separate metal plate, as shown in Figure 5 below, to create half of the model lift. The syringes that you epoxy to the metal plates are the slave syringes (or slave hydraulic cylinders).
    1. Following the safety recommendations and directions on the epoxy package, mix up enough epoxy to make one lift at a time. Use a paper plate and a disposable spoon to mix the epoxy. You may want to have an adult help you with this.
    2. Place a small dollop of epoxy in the middle of one of the metal plates.
    3. Epoxy the top of one of the 12-cc syringe pistons to the metal plate. Follow the directions on the epoxy package, and allow the epoxy to cure for the recommended amount of time. Throw away the paper plate and spoon.
    4. Repeat steps 4a to 4c with one 35-cc syringe and one 60-cc syringe.
This image shows the three slave syringes
Mechanical Engineering science project
Figure 5. This image shows the three slave syringes and wall plates used in the experiment. Each slave syringe/metal plate pair comprises half of a model hydraulic lift.
  1. You will next use another 12 cc syringe and tubing to make the master syringe (or master hydraulic cylinder).
    1. Cut a 30 centimeter (cm) piece of tubing.
    2. Push the tip of a 12 cc syringe (that is not epoxied to a wall plate) into one end of the tubing.
    3. The master syringe is now ready to attach to the slave syringe (slave hydraulic cylinder) to create the hydraulic lift.
  2. Fill the master syringe and its tubing with water and prepare to attach it to the slave syringe to create the hydraulic lift. Water will serve as the hydraulic fluid in the hydraulic lifts.
    1. Push the piston in the master syringe all the way down so that it is fully depressed into the cylinder.
    2. Place the free end of the tubing into the glass of water and pull the piston up (while firmly holding the rest of the syringe). This will suck water into the tubing and syringe. Pull the piston slowly and smoothly so that you avoid getting bubbles in the tubing.
    3. Pull the master syringe's piston up as far as it can go without falling out of the cylinder of the syringe.
    4. Depress the master syringe's piston a tiny bit to remove any bubbles at the end of tubing.
  3. Insert the tip of the 12 cc slave syringe into the free end of the tubing that is attached to the master cylinder. See Figure 6 below to view how to put these two parts together.
    1. Confirm that the 12 cc hydraulic lift works by pushing and pulling the water into and out of the slave syringe by pushing and pulling the master syringe's piston. Note If the tubing pops off the syringes, simply refill the tubing and master syringe with water, as in step 6, and reattach the tubing to the slave syringe, sealing the connection with plumber's putty.
    2. End your practice by pulling on the master piston and bringing the water from the slave syringe back into the tubing and master syringe.
This image shows the master syringe
Mechanical Engineering science project
Figure 6. This image shows the master syringe attached to a slave syringe and its metal plate.
  1. Repeat steps 6 and 7 using the 35 cc slave syringe/metal plate assembly and a 12 cc master syringe/tubing assembly, to create the 35 cc model hydraulic lift.
  2. Repeat steps 6 and 7 using the 60 cc slave syringe/metal plate assembly and a 12-cc master syringe/tubing assembly, to create the 60 cc model hydraulic lift.

Testing the Model Hydraulic Lifts

  1. You are now ready to test the 12 cc model hydraulic lift, the 35 cc model hydraulic lift, and the 60 cc model hydraulic lift (all with a 12 cc master syringe, or master hydraulic cylinder). All three model hydraulic lifts should have a master and slave syringe, and hydraulic fluid, or water, in the master syringe and tubing.
    1. Make sure that the hydraulic fluid, or water, is in the tubing and master syringe. The slave piston must be depressed in its cylinder.
  2. Place the vise on a sturdy table. The vise will be used to support and hold the lifts while they are lifting.
  3. Use a set of light weights (such as the metric weights in the Materials list) or several types of materials of various weights to test the model hydraulic lift.
    1. For example, you can use books, bottles of water, or cans of food. You can combine a couple of different items to make heavier weights.
  4. To prepare the 12 cc model lift for testing, insert the 12 cc slave syringe and its metal plate vertically into the vise. Mount the lift so that the collar of the syringe is sitting on the vise's jaws and the metal plate is above its jaws, as shown in Figure 7 below. Mount the slave syringe cylinder high in the vise so that the piston does not stick as it moves up and down. Mount each slave syringe that you test the same way in the vise.
    1. Tighten the vise enough to hold the syringe but not so tight that the piston cannot move up and down within the barrel.
    2. The lift should be held firmly enough so that when you place weight on the plate, the lift does not fall over.
Here is a completed 12 cc model hydraulic lift
Mechanical Engineering science project
Figure 7. Here is a completed 12 cc model hydraulic lift, where the lift is properly held and supported by the vise.
  1. The 12 cc model lift is now ready for testing. Use the weights that you collected and determine the heaviest weight that the 12 cc lift can support. Start with a small weight and try increasingly heavy weights. Record all data in a data table in your lab notebook.
    1. If you are using your own materials for testing (not a set of standard weights) then weigh the material on the digital scale before placing it on the lift. Record the weight of the material in your lab notebook.
    2. Set the materials on the plate. Smoothly depress the master piston, delivering all of the hydraulic fluid, or water, from the master syringe to the slave syringe. As the master piston is depressed, and the hydraulic fluid is delivered, the slave piston and the metal plate will rise.
    3. Wait to see if the lift supports the weight. If the lift supports the weight, the weight and the plate will not move and will stay in the lifted position. Record that the lift is successful in supporting the weight in your lab notebook.
    4. If the lift cannot support the weight, the weight will depress the slave piston, and the hydraulic fluid will flow out of the slave syringe and back into the master syringe. Record that the lift is unsuccessful in supporting the weight in your lab notebook.
    5. If your lift successfully lifted the weight, pull the master piston and bring the weight back down. Then increase the weight by about 100 grams, using different materials, until you find the maximum weight the lift can support. Record all data in your lab notebook.
    6. You may find that with heavier weights, with the piston fully extended, the vise may start to tumble. In this case, have your volunteer hold the vise.
    7. Repeat steps 5a through 5f two more times for a total of three trials. Redoing your experiments ensures that your data is repeatable and accurate. Before each trial, pull the master piston out and bring the hydraulic fluid back into the master syringe and tubing.
  2. Repeat steps 3 to 5 with the 35 cc hydraulic model lift. Remember to record all data in a data table in your lab notebook.
  3. Repeat steps 3 to 5 with the 60 cc hydraulic model lift. Remember to record all data in a data table in your lab notebook.

Analyzing the Data

  1. Calculate the force, specifically the multiplicative factor, that was applied to each of the different slave pistons by the master piston. Use Equation 3 from the Introduction to calculate the forces.
    1. Since you can't calculate the force that you applied to the master piston, just assume that it is a number, "X," and calculate the multiplicative factor that is given by the ratio of the area of the slave piston to the area of the master piston. Record the multiplicative factors in a second data table in your lab notebook.
    2. In order to calculate the forces, you will need to find the radius of each of the syringes. Use a ruler to measure the width of the three syringe barrels. The radius of the cylinder of the syringe is half of the width (or diameter). Record your calculations in your lab notebook.
  2. Which piston had the most force applied to it? Which had the least? How does this relate to the principle of force multiplication in hydraulics?
  3. Review the data in the first data table in your lab notebook. Graph your data on a x-y plot, including the data for all three trials on one plot. Plotting all the data on one plot will let you see how the data changes.
    1. Plot the maximum weight that each lift was able to support. Put the different hydraulic model lift names (based on the cc size of the slave pistons) on the x-axis and label the y-axis Maximum Weight Supported (grams).
    2. You can make your plots by hand or if you need more information, or would like to make your plots online, try this website: CreateAGraph.
  4. What does your graph look like? Does the trend make sense given the principle of force multiplication in hydraulics? How does your data correlate to the force calculations you performed for each piston using Equation 3?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Repeat the experiment using mineral oil as the hydraulic liquid instead of water. Does this change affect the maximum weight supported for each lift?
  • What other types of models of construction machinery or fun contraptions can you build applying the principles of hydraulics? For example, can you build a barbershop chair or a toy to entertain your pet? Let your imagination go! The Engineer Design Process guide can help you get started.
  • Make a lift with two slave syringes and one master syringe. What is the maximum weight this lift can support?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

Mechanical engineer building prototype

Mechanical Engineer

Mechanical engineers are part of your everyday life, designing the spoon you used to eat your breakfast, your breakfast's packaging, the flip-top cap on your toothpaste tube, the zipper on your jacket, the car, bike, or bus you took to school, the chair you sat in, the door handle you grasped and the hinges it opened on, and the ballpoint pen you used to take your test. Virtually every object that you see around you has passed through the hands of a mechanical engineer. Consequently, their skills are in demand to design millions of different products in almost every type of industry. Read more
Argonne National Laboratory automotive engineers testing plug-in vehicle

Automotive Engineer

Cars are an important part of our daily lives. We depend on them to perform everyday tasks—getting to and from school and work, sports practice, grocery shopping, and various errands—and also to keep us safe while doing so. Our cars can keep us cool or warm while we drive them, and they even help us find our way. The automobile is made up of complicated braking, steering, and electrical systems, in addition to the engine and drive train. All of these systems require a tremendous amount of engineering, which is the responsibility of automotive engineers. They develop the components and systems that make our vehicles efficient and safe. Read more
Female physicist working

Physicist

Physicists have a big goal in mind—to understand the nature of the entire universe and everything in it! To reach that goal, they observe and measure natural events seen on Earth and in the universe, and then develop theories, using mathematics, to explain why those phenomena occur. Physicists take on the challenge of explaining events that happen on the grandest scale imaginable to those that happen at the level of the smallest atomic particles. Their theories are then applied to human-scale projects to bring people new technologies, like computers, lasers, and fusion energy. Read more
female mechanical engineering technician

Mechanical Engineering Technician

You use mechanical devices every day—to zip and snap your clothing, open doors, refrigerate and cook your food, get clean water, heat your home, play music, surf the Internet, travel around, and even to brush your teeth. Virtually every object that you see around has been mechanically engineered or designed at some point, requiring the skills of mechanical engineering technicians to create drawings of the product, or to build and test models of the product to find the best design. Read more

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity