Jump to main content

X-Ray Vision: Seeing Into Space

1
2
3
4
5
455 reviews

Abstract

Have you ever seen amazing, colored images of objects in space, like stars or even entire galaxies? Some of these images were originally taken with forms of radiation that the human eye cannot actually see, like x-rays. In order to create the beautiful pictures you see in the news or online, scientists have to use an image-editing program to add color to them. In this astronomy science project, you will use raw x-ray data from NASA's Chandra X-ray Observatory telescope to create amazing colorized images of objects in space.

Summary

Areas of Science
Difficulty
 
Time Required
Average (6-10 days)
Prerequisites
None
Material Availability
This science project requires a computer with internet access.
Cost
Very Low (under $20)
Safety
No issues
Credits

Ben Finio, PhD, Science Buddies

Objective

Learn about how and why NASA false-colors x-ray images; then follow the same procedure to create your own images and compare them to the NASA ones.

Introduction

Have you ever looked up at the night sky and seen hundreds, if not thousands, of stars? Or imagined seeing fantastic objects like supernovas, black holes, or even entire galaxies up close? You might not be able to see them with your naked eye, but powerful telescopes allow us to see deep into space and to detect objects that are incredibly far away.

You can see the stars because they emit visible light, but visible light is just one type of electromagnetic radiation. Humans can only actually see a very small part of the electromagnetic spectrum, which includes other types of radiation like radio waves and x-rays (Figure 1). Electromagnetic radiation consists of waves of radiation with a certain wavelength. A wave with a shorter wavelength has a higher frequency. High-frequency waves have more energy, so objects that are very hot tend to emit high-energy (and thus high-frequency) radiation, like x-rays.

Graph of the electromagnetic spectrum shows wavelengths, images of scaled objects, frequency and temperature

Diagram of the electromagnetic spectrum with objects to show the relative scale of elctromagnetic waves. Radiowaves have the longest wavelengths (on the scale of tall buildings), while gamma rays have shortest wavelengths (on the scale of the width of atomic nuclei). Objects that emit longer waves such as radio or microwaves are extremely cold (1 Kelvin) and objects that emit shorter waves like gamma rays have temperatures that exceed ten million Kelvin.


Figure 1. This diagram of the electromagnetic spectrum shows the wavelengths and frequencies of different types of radiation, along with the temperature of objects that emit them. Remember that the human eye can only see visible light, which is a very small part of the whole electromagnetic spectrum. Note that "K" stands for Kelvin, a unit used to measure temperature (Wikimedia Commons user Inductiveload, 2007).

It turns out that stars do not just emit visible light; they also emit other types of radiation. So, organizations like the National Aeronautics and Space Administration (NASA) use powerful telescopes that can "see" other types of radiation, and detect objects that are much too far away for the unaided human eye to see. This helps scientists learn more about the formation of our universe.

This astronomy science project will focus in on one such telescope, the Chandra X-ray Observatory, which is a satellite that is currently (as of 2013) orbiting Earth. This satellite can take x-ray images of faraway objects in space. As shown in Figure 1, objects that emit x-rays tend to be very hot, so observing x-rays can tell scientists information about very hot, energetic objects in space like supernovas (exploding stars), nebulas (huge clouds of dust and gas in space), and even regions near black holes. We would not be able to learn as much about these objects if we only looked at them with visible light.

Figure 2 shows two images from the Chandra X-ray Observatory. But wait a minute; you just learned that we cannot actually see x-rays, so where did the color images in Figure 2 come from? Well, the Chandra Observatory works kind of like a digital camera, but it records x-rays instead of visible light. Digital cameras record numbers corresponding to the intensity of red, green, and blue (RGB) light. Red, green and blue light have slightly different wavelengths in the "visible" part of the electromagnetic spectrum. Red light has the lowest frequency, so it has the lowest energy, blue light has the highest frequency (and thus highest energy), and green is in the middle. Similarly, Chandra records a number for low-, medium-, and high-energy x-rays, but those x-rays do not have a "color," because we cannot see them. So, NASA scientists use a photo editing program to create a false-color image by assigning a color to each x-ray energy band. NASA scientists usually assign red to low energy, green to medium energy, and blue to high energy (corresponding to visible light, also called rescaling). The photos you see in Figure 2 are the end result of that process.

Colored image of the galaxy Centaurus A   A color-adjusted image of remnants from the Chandra supernova SN 1006 appear as a blue and red sphere
Figure 2. Two false-colored images taken by the Chandra X-ray Observatory. (Left) Centaurus A, a nearby galaxy with a super-massive black hole in the middle. (Right) SN 1006, the remnants of a supernova.

But, what exactly does that process look like from the beginning? That is what you will find out in this science project. Figure 3 shows the original low-, medium-, and high-energy band x-ray images of the supernova Cassiopeia A. Notice how the photos are black and white (referred to as a grayscale image), because no color has been added yet. Bright areas correspond to where x-rays in that energy band were detected, and black areas correspond to where no x-rays in that energy band were detected.

Three x-ray photos of a supernova at low, medium and high energy bands appear black and white
Figure 3. The Chandra telescope's raw low-, medium-, and high-energy band x-ray data of the supernova Cassiopeia A.

You probably notice that the images in Figure 3 look very dark relative to the ones in Figure 2. This can be fixed by adjusting the images' levels with image-editing software. This is not the same as just adjusting the image's brightness; it allows you to brighten some areas of the image while leaving others dark (or vice versa). You will learn more about this process in the Procedure.

Three level adjusted x-ray images of a supernova at low, medium and high energy bands appear black and white
Figure 4. The original files from Figure 3 after they have had their levels adjusted. The shapes and details of each image are now much clearer.

Now the images in Figure 4 are much clearer, but they are still black and white. The next step is to colorize the grayscale images by assigning a single color to each one, as shown in Figure 5.

Three color adjusted x-ray images of a supernova at low, medium and high energy bands appear red, green and blue
Figure 5. Each individual grayscale image is colorized; with red, green, and blue representing low-, medium-, and high-energy bands, respectively.

Finally, the three colorized images are merged into a single RGB image. This lets us see different regions of x-ray intensity in a single object, as shown in Figure 6.

Composite image of three color adjusted x-ray images of a supernova
Figure 6. Combing the red, green, and blue images shows the relative intensities of low-, medium-, and high-energy x-rays all in one image.

The final color image can inform scientists about what is going on. In this particular case, there is a high-energy blast wave (shown in blue) from the initial explosion, which is hotter than the gases that were left behind (red and green). Areas with multiple types of x-rays appear in other colors, like yellow or purple. Note that the entire image-editing process can be somewhat subjective; for example, scientist could intentionally emphasize bright blue areas, but make the red areas very dull, in case he or she was particularly interested in very high-energy x-ray emissions. So, starting with the same source files, two different people could arrive at a very different final image.

You can learn more about what x-ray emissions mean for different bodies from the Chandra X-ray Astronomy Field Guide (see the Bibliography), but here are a few examples:

In this astronomy science project, you will choose a set of raw x-ray data from the Chandra website. Based on your background research and what you see in the official colorized NASA images of the object, you will predict what you should be able to see by manipulating the raw x-ray data, and what the final image should tell you about the object.

Terms and Concepts

Questions

Bibliography

Materials and Equipment

Experimental Procedure

Learning How to Manipulate Images

  1. NASA makes some raw Chandra data available through the Flexible Image Transport System, or FITS. Make sure you read the Introduction and Background page for the FITS program before proceeding.
  2. Follow the directions on that page to download and install the Gnu Image Manipulation Program (GIMP), an open-source image-editing program similar to Adobe® Photoshop®.
    1. Also make sure you follow the directions to install GREYC's Magic for Image Computing (G'MIC). This is an add-on package for GIMP that includes various filters and special effects you can use on your images.
  3. As practice, follow the tutorial to colorize the raw images of the supernova Cassiopeia A. You can also follow along with the video tutorial. This is the same procedure that was used in Figures 4–7 of the Introduction.
    1. Note: In Step 5.2 of the tutorial, the "Smooth [anisotropic]" filter is listed under "Repair", not under "Enhancement". This will make sense when you get to that step in the tutorial or watch the video.
    2. Remember that you can choose to make different adjustments to different layers of an image. If you want a direct comparison between the relative levels of low-, medium-, and high-energy x-rays, you can make the same adjustments to each layer. If you want to emphasize one energy level over another, you can make different adjustments. How you do this will affect the appearance of your final image.
    3. Remember that adjusting an image's "levels" is not the same thing as adjusting its brightness. Watch the video to learn more.
This video shows the process of using GIMP to colorize the raw data files available for the supernova Cassiopeia A. Written directions for this procedure are available at http://chandra.harvard.edu.

Selecting and Researching an Image to Use for Your Science Project

  1. The OpenFITS — Create Images from Raw Data page lists 17 different sets of FITS files. Click on the images of the astronomical bodies on the right side of the page to bring up that astronomical body's profile page on the Chandra website.
    1. For example, this page has information about Cassiopeia A.
  2. Browse through the images and choose one you would like to work with for your science project. Is there a particular type of astronomical body you are interested in; for example, a supernova, black hole, or maybe an entire galaxy?
    1. Note: Two of the images (#3 M87 and #13 Crab Nebula) only supply broadband image data instead of 3-color data. If you want to use these images, you will need to do additional research, because they do not follow the same procedure used in this science project.
  3. Do background research about the body you have chosen.
    1. Make sure you read the object's description page by clicking on its image on the OpenFITS page.
    2. On the lower right-hand side of the description page, you should see links to more images of the same object. Follow those links to find more information.
    3. Read about the type of object you selected in the "X-Ray Sources" section of the X-Ray Astronomy Field Guide.
    4. Depending on the object you selected, you may need to do more background research. The Chandra website has a lot of good resources, but you may need to search for more resources from NASA or from another organization.
    5. Remember the types of questions you should ask: What is the object? Why do objects like it emit x-rays? What does the x-ray spectrum of this object tell you about the object? Why would some parts of the image be hotter than others?
  4. Form a hypothesis about what you should be able to accomplish by manipulating the raw data files.
    1. For example, should you be able to see multiple distinct bodies (like individual galaxies or stars)?
    2. For cloud-like objects like supernovas and nebulas, should you be able to differentiate between "hotter" and "colder" (high- and low-energy) regions?
    3. What do the official colorized images on the Chandra website look like? Do you think your final images will look just like those?
    4. Important: Be careful when viewing images on each object's description pages, as sometimes they will be composite images that include data from other telescopes. For example, this image of the galaxy M87 is a composite image of x-ray, optical, and radio telescope data, whereas this image of Supernova 1006 only shows x-ray data. Remember that the FITS files you download will only include x-ray data.
  5. Download the raw FITS files (in .zip format) for your image from the openFITS page. Unzip the files and save them on your computer.
  6. Colorize the image, by following the same steps as are listed in the tutorial for Cassiopeia A.
    1. Remember that different images might require different adjustments. Just because you used certain settings in the "Levels" and "Colorize" menus for Cassiopeia A does not mean those exact settings will work for your new image. The image colorization process is part science and part art; it may take a lot of careful back-and-forth tweaking before you can get an image you are happy with.
    2. Be patient and remember to save your work frequently. Remember that you can always start over with the raw FITS files if you really do not like your results.
    3. If you get an error message or are having a lot of trouble with a particular image, go back to step 2 and try picking a new image.
  7. Analyze your final image when you have finished adjusting it. Record your observations in your lab notebook.
    1. How does your actual image compare with your hypothesis about how your image should have looked? Was the process of creating the colorized image more difficult than you expected?
    2. Does your image have enough detail (not too dark, but not too bright or washed out) to identify individual features or objects? Based on your background research, what are they?
    3. Can you explain different regions of red, green, and blue in your image? Based on your background research, what do they represent or correspond to?
    4. How does your final image compare to colorized images on the Chandra website? Remember to be careful not to compare your image directly to one that also includes data from non x-ray telescopes like radio, optical, or infrared.
icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Global Connections

The United Nations Sustainable Development Goals (UNSDGs) are a blueprint to achieve a better and more sustainable future for all.

This project explores topics key to Industry, Innovation and Infrastructure: Build resilient infrastructure, promote sustainable industrialization and foster innovation.

Variations

  • Find publicly available data from other telescopes (for example, radio or infrared) and apply the same procedure you used in this science project to create colorized images.
  • Compare images of the same astronomical bodies taken with different telescopes. An object could look completely different depending on whether you view it in infrared, visible light, or x-rays.
  • Astronomers can also use x-ray data for spectrometry, which means using the detected x-ray spectrum to determine which chemical elements (like hydrogen and iron) make up the object being observed. Figure out how to determine which chemical elements are present in your image. This is a more-advanced science project that may require additional software (not just GIMP).
  • Apply the process you learned in this science project to another area of science. For example, sometimes biologists will merge grayscale images of cells to create a single colorized image.
  • Use the same source files and modify your image-editing process to create final images that look very different from each other. Can you see how, if used incorrectly, this process could possibly be misleading, leading to misrepresentation of data and incorrect interpretation of results?

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
Astronomers think big! They want to understand the entire universe—the nature of the Sun, Moon, planets, stars, galaxies, and everything in between. An astronomer's work can be pure science—gathering and analyzing data from instruments and creating theories about the nature of cosmic objects—or the work can be applied to practical problems in space flight and navigation, or satellite communications. Read more
Career Profile
Physicists have a big goal in mind—to understand the nature of the entire universe and everything in it! To reach that goal, they observe and measure natural events seen on Earth and in the universe, and then develop theories, using mathematics, to explain why those phenomena occur. Physicists take on the challenge of explaining events that happen on the grandest scale imaginable to those that happen at the level of the smallest atomic particles. Their theories are then applied to… Read more
Career Profile
Lights, camera, action! It takes more than actors to put an exciting motion picture movie together. It takes film and video editors and cutting-edge computer technology to make an exciting movie that people want to see. From the many thousands of minutes of film and video, the editor has to choose the best shots to tell a cohesive and compelling story. In addition to having an artistic bent, the film and video editor must relish working with complicated computer equipment. If you would like to… Read more
Career Profile
Nuclear engineers harness the power of the atom to help solve large and difficult problems facing humanity. They design power plants that create energy to power homes and businesses without producing greenhouse gases. They develop machines that image the human body and destroy cancer cells, sterilize food and medical equipment, and create new pest or drought-resistant seeds. They work to make the world a better place. Read more

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "X-Ray Vision: Seeing Into Space." Science Buddies, 10 July 2021, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Astro_p040/astronomy/x-ray-vision-seeing-into-space. Accessed 19 Mar. 2024.

APA Style

Science Buddies Staff. (2021, July 10). X-Ray Vision: Seeing Into Space. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Astro_p040/astronomy/x-ray-vision-seeing-into-space


Last edit date: 2021-07-10
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.