Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

What Makes Ice Melt Fastest?

Difficulty
Time Required Short (2-5 days)
Prerequisites None
Material Availability Readily available
Cost Low ($20 - $50)
Safety No issues

Abstract

If you live in a place that gets cold in the winter, you have probably seen trucks out spreading a mixture of sand and salt on the streets after a snowfall to help de-ice the road. Have you ever wondered how this works? This basic chemistry project can give you some clues.

Objective

To determine which added material will make ice melt fastest.

Credits

Andrew Olson, Ph.D., and Teisha Rowland, Ph.D., Science Buddies

Cite This Page

MLA Style

Science Buddies Staff. "What Makes Ice Melt Fastest?" Science Buddies. Science Buddies, 23 July 2014. Web. 23 Nov. 2014 <http://www.sciencebuddies.org/science-fair-projects/project_ideas/Chem_p049.shtml>

APA Style

Science Buddies Staff. (2014, July 23). What Makes Ice Melt Fastest?. Retrieved November 23, 2014 from http://www.sciencebuddies.org/science-fair-projects/project_ideas/Chem_p049.shtml

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2014-07-23

Introduction

If you have ever made homemade ice cream the old-fashioned way using a hand-crank machine, you probably know that you need ice and rock salt to make the cream mixture cold enough to freeze. Similarly, if you live in a cold climate, you have seen the trucks that salt and sand the streets after a snowfall to prevent ice from building up on the roads. In both of these instances, salt is acting to lower the freezing point of water, and changing what phase of matter the water is (i.e., turning solid ice into liquid water).

For the ice cream maker, because the rock salt lowers the freezing point of the ice, the temperature of the ice/rock salt mixture can go below the normal freezing point of water. This makes it possible to freeze the ice cream mixture in the inner container of the ice cream machine. For the salt spread on streets in wintertime, the lowered freezing point means that snow and ice can melt even when the weather is below the normal freezing point of water. Both the ice cream maker and road salt are examples of freezing point depression.

Table salt (technically sodium chloride, or NaCl) when mixed with water is an example of a chemical solution. In a solution, there is a solvent (the water in this example), and a solute (the salt in this example). A molecule of the solute dissolves (goes into solution) because the force of attraction between the solute molecule and the solvent molecules is greater than the force of attraction between the molecules of the solute. Water (H2O) is a good solvent because it is partially polarized. (This polarization is caused by the distribution of electrons in the water molecule; specifically, its hydrogen ends have a partial positive charge, and the oxygen end has a partial negative charge.) Because water molecules are partially polarized, it is possible for them to arrange themselves around ions (which are molecules or atoms that have a charge), like the sodium (Na+) and chloride (Cl-) ions that make up table salt. This is why there is a greater attraction between the water molecules and the molecules of salt than there is between the molecules of salt by themselves, and why the water can dissolve the salt to create a salty solution.

Other substances when mixed with water can also lower its freezing point. The amount by which the freezing point is lowered depends only on the number of molecules dissolved, not on their chemical nature. This is an example of a colligative property. In this science project, you will investigate different substances to see how they affect the rate at which ice cubes melt. You will test substances that dissolve in water (i.e., soluble substances), like salt and sugar, as well as a substance that does not dissolve in water (i.e., an insoluble substance), specifically sand. Which substances will speed up the melting of the ice?

Terms and Concepts

  • Freezing point
  • Phases of matter
  • Freezing point depression
  • Solution
  • Solute
  • Solvent
  • Molecules
  • Colligative properties

Questions

  • What is freezing point depression? When does it happen?
  • How are solutions made?
  • Which of the suggested test substances are soluble in water?
  • Which of the suggested test substances are insoluble in water?

Bibliography

For more information on colligative properties, see:

For information on Avogadro's number and molecular weight, see:

To try a simulated experiment on freezing point depression or boiling point elevation, see this resource (note that it is a Flash animation that requires browser plug-in):

News Feed on This Topic

 
, ,
Reading level:
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Materials and Equipment

  • Identical bowls or saucers (4)
  • Ice cubes (12). They should all be the same size and shape.
  • Salt (¾ tsp.)
  • Sugar (¾ tsp.)
  • Sand (¾ tsp.)
  • ¼ teaspoon measuring spoon
  • Timer or clock
  • Refrigerator. You will want an empty shelf that can hold all four bowls, unstacked, at the same time.
  • 50 mL graduated cylinder, or smaller size. Such a graduated cylinder is available from Amazon.com.
  • Large cup with a spout, such as some measuring cups. Alternatively you could use a funnel that fits in the graduated cylinder.
  • Optional: Masking tape and a permanent marker for labeling the bowls
  • Lab notebook
Materials needed to do ice cube melting project.
Figure 1. You will need these household materials, and access to a refrigerator, to do this science project. If you want to label the bowls, you will also need masking tape and a permanent marker.

Disclaimer: Science Buddies occasionally provides information (such as part numbers, supplier names, and supplier weblinks) to assist our users in locating specialty items for individual projects. The information is provided solely as a convenience to our users. We do our best to make sure that part numbers and descriptions are accurate when first listed. However, since part numbers do change as items are obsoleted or improved, please send us an email if you run across any parts that are no longer available. We also do our best to make sure that any listed supplier provides prompt, courteous service. Science Buddies does participate in affiliate programs with Amazon.comsciencebuddies, Carolina Biological, and AquaPhoenix Education. Proceeds from the affiliate programs help support Science Buddies, a 501( c ) 3 public charity. If you have any comments (positive or negative) related to purchases you've made for science fair projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

  1. Get the salt, sugar, sand, and measuring teaspoon ready to use nearby.
    1. Once you have set up the ice cubes in their bowls, you will want to quickly add the substances to the ice cubes so that they do not melt before adding the substances.
  2. Into each of the four bowls, quickly place three ice cubes. Arrange the ice cubes so that only the corners are touching, forming a triangular shape, as shown in Figure 2, below.
    1. Tip: If you are using ice cubes from a tray, it helps to let the tray sit at room temperature a little (for about five minutes) so that the ice cubes more easily come out of the tray and do not break into pieces.
Three ice cubes in a bowl.
Figure 2. Arrange three ice cubes in each bowl so that just the corners of the ice cubes touch each other.
  1. Carefully sprinkle ½ teaspoon (tsp.) of salt over the ice cubes in one bowl, as shown in Figure 3, below. Then sprinkle ½ tsp. of sugar over the ice cubes in another bowl, and ½ tsp. of sand over the ice cubes in the third bowl. Do not sprinkle anything over the ice cubes in the fourth bowl — it will be your control.
Three ice cubes in a bowl with salt being added.
Figure 3. Sprinkle salt, sugar, sand, or nothing over the ice cubes in each bowl.
  1. Move each bowl to an empty shelf in the refrigerator. If any of the ice cubes no longer form a triangular shape in their bowl, gently nudge the ice cubes to make a triangle again.
    1. You are doing this experiment in the refrigerator because it is easier to see the effects of colligative properties at colder temperatures. To think about why this is, imagine melting an ice cube on a hot, paved road compared to melting it in the refrigerator. The hot temperature of the road will make all of the ice cubes melt very quickly, which makes it harder to see the relatively minor effects of colligative properties on how fast the ice cubes melt.
  2. Note the starting time in your lab notebook. Tell other people who may use the refrigerator that you are doing a science project and to not leave the refrigerator door open long as this could change the temperature of the refrigerator.
  3. Check on the ice cubes every hour. When the ice cubes in one of the bowls have become at least half melted, take out all four bowls from the refrigerator and move on to step 7. (Be sure to take the bowls out before the ice cubes in two or more bowls have completely melted.)
    1. Depending on how cold your refrigerator is, it may take about four hours for the ice cubes to become at least half melted.
    2. While you are waiting, make a data table like Table 1 in your lab notebook.
Substance Amount Melted (mL) Amount Remaining (mL) Total Amount (mL) Percentage Melted
Salt     
Sugar     
Sand     
Nothing     
Table 1. Make a data table like this one in your lab notebook to record your results in. Note that the liquid measurements should be recorded in milliliters (mL).
  1. Carefully pour the liquid water from one of the bowls into a cup with a spout, such as a large measuring cup. Make sure the ice cubes stay in the bowl, but get as much liquid into the cup as possible. Then carefully pour the liquid from the cup into the graduated cylinder. Record how much liquid was in the bowl (the amount of ice melted) in the data table in your lab notebook. After recording your results, clean out and dry the cup and graduated cylinder.
    1. Alternatively, you could use a funnel instead of a cup with a spout and funnel the liquid directly into the graduated cylinder from the bowl.
  2. Repeat step 7 with the three other bowls.
    1. When pouring the liquid from the bowl with the sand, try to leave as much sand in the bowl as possible.
  3. Now let the ice cubes completely melt in their bowls (you can leave them at room temperature). Once all of the ice cubes are melted, repeat steps 7–8 (but this time you will not need to worry about keeping the ice cubes in the bowls). Record the amount of liquid remaining in each bowl in your data table.
  4. Calculate the total amount of water (originally in ice cube form) that was in each bowl. To do this, add the "amount melted" to the "amount remaining" for each bowl. Record the total amount for each bowl in your data table.
    1. For example, if the amount melted was 65 mL and the amount remaining was 25 mL, the total amount would be 90 mL.
  5. Calculate the percentage of ice that was melted (when you first took the bowls out of the refrigerator) for each bowl. Do this by dividing the amount melted by the total amount.
    1. For example, if 65 mL was melted, and the total amount was 90 mL, the percentage melted would be 72%.
  6. Clean out and dry the bowls. Then repeat steps 1–11 at least two more times so that you have done at least three trials total.
  7. Did any of the substances you tested consistently speed up the melting of the ice (compared to the melting rate of plain ice cubes with nothing added)? If so, can you explain your results?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Does the melting rate depend on the amount of solute added? Design an experiment to find out.
  • Investigate the effect of temperature on how colligative properties melt the ice cubes. To do this, try your experiment at different temperatures, such as room temperature or outside on a hot day. Be sure to monitor the temperature regularly throughout your experiment.
  • Do other substances help melt the ice cubes more quickly or slowly? Identify some substances to try and then repeat this experiment.
  • For a related, more advanced experiment on freezing point depression, see the Science Buddies project Chemistry of Ice-Cream Making: Lowering the Freezing Point of Water
  • Do you think salt would melt ice in your freezer? Why or why not? Try it and find out.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

Picture of chemist

Chemist

Everything in the environment, whether naturally occurring or of human design, is composed of chemicals. Chemists search for and use new knowledge about chemicals to develop new processes or products. Read more
chemistry teacher conducting classroom demonstration

Chemistry Teacher

When you hear the word chemicals, you might think of laboratories and scientists in white coats; but actually, chemicals are all around you, as well as inside of you. Everything in the world is made up of chemicals, also known as matter, or stuff that takes up space. Chemistry is the study of matter—what it is made of, how it behaves, its structure and properties, and how it changes during chemical reactions. Chemistry teachers are the people who help students understand this physical world, from the reactions within our own bodies to how soaps and detergents work and why egg proteins can keep a cookie from crumbling. They prepare the next generation of scientists and engineers, including all healthcare professionals. They also help also students develop scientific literacy. Read more
female chemical technician monitoring experiment

Chemical Technician

The role that the chemical technician plays is the backbone of every chemical, semiconductor, and pharmaceutical manufacturing operation. Chemical technicians conduct experiments, record data, and help to implement new processes and procedures in the laboratory. If you enjoy hands-on work, then you might be interested in the career of a chemical technician. Read more

News Feed on This Topic

 
, ,
Reading level:
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity