Home Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Solar-powered Chemistry: Study Chemical Reaction Rates in Ultraviolet Beads

Difficulty
Time Required Short (2-5 days)
Prerequisites None
Material Availability You will need to order UV beads online. See the Materials and Equipment list for details.
Cost Low ($20 - $50)
Safety No issues

Abstract

Most of the ultraviolet (UV) light produced by the Sun is blocked by the atmosphere, but some UV light does still reach Earth. It can be detected using electronic devices, but can also be detected with something called UV beads. UV beads contain a pigment that changes color when they are exposed to ultraviolet radiation from the Sun. In this chemistry science fair project, you will use UV beads to study how temperature affects the rate at which they lose their color.

Objective

Use UV beads to study a chemical reaction to find out how temperature affects the rate at which UV beads lose their color.

Credits

David B. Whyte, PhD, Science Buddies

  • StyrofoamTM is a registered trademark of The Dow Chemical Company.

Cite This Page

MLA Style

Science Buddies Staff. "Solar-powered Chemistry: Study Chemical Reaction Rates in Ultraviolet Beads" Science Buddies. Science Buddies, 30 Sep. 2013. Web. 29 July 2014 <http://www.sciencebuddies.org/science-fair-projects/project_ideas/Chem_p088.shtml?fave=no&isb=c2lkOjEsaWE6Q2hlbSxwOjQscmlkOjQ3MjkwNTA&from=TSW>

APA Style

Science Buddies Staff. (2013, September 30). Solar-powered Chemistry: Study Chemical Reaction Rates in Ultraviolet Beads. Retrieved July 29, 2014 from http://www.sciencebuddies.org/science-fair-projects/project_ideas/Chem_p088.shtml?fave=no&isb=c2lkOjEsaWE6Q2hlbSxwOjQscmlkOjQ3MjkwNTA&from=TSW

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2013-09-30

Introduction

Though ultraviolet (UV) light can be detected with electronic devices, a simple and colorful way to detect ultraviolet (UV) light is with UV-sensitive beads. UV beads change color when they are exposed to sunlight or to another ultraviolet (UV) light source, but they remain white or off-white when indoors. Because lightbulbs in homes and businesses do not produce ultraviolet light, the UV beads are colorless when kept indoors. But if you take them outside on a sunny day, UV light from the Sun turns them a variety of colors, including red, orange, yellow, blue, and purple. Some people even make bracelets from the beads so they know when they are exposed to UV light.

UV beads are made from white or clear plastic, with a photochromic dye, which means that the dye changes color when it reacts with ultraviolet light. This is a chemical reaction, which is defined as the process in which one or more substances (reactants) are chemically changed into one or more new substances (products). The ultraviolet light actually causes the shape of the molecules to change. After interacting with the UV light, the molecules change from a colorless form to a colored form. See Figure 1. The molecule undergoes a reversible rearrangement. It is reversible because the product can convert back to the reactant (this is indicated by the two arrows, one pointing left and the other pointing right). And it is a rearrangement because the parts of the molecule were rearranged.

Chemistry Science Project  Example of a molecule that changes color when exposed to ultraviolet light.
Figure 1. Example of a molecule that changes color when exposed to ultraviolet light. The colored form of the molecule is not very stable, so with just a little energy from room-temperature heat, the molecule reverts back to its colorless form. You can read the Wikipedia article on photochromism, listed in the Bibliography, for more details about this reaction. (Wikipedia, 2009.)

The goal of this chemistry science fair project is to investigate how temperature affects the speed with which the colored molecules return to their color-free state. In other words, how does temperature affect the rate at which the colored form of the molecules reverts to the color-free form? The reaction rate measures change per unit time. For this science fair project, the change will be loss of color from the beads. The time will be how long it takes, in seconds, for the change to occur.

Terms and Concepts

  • Ultraviolet (UV) light
  • Photochromism
  • React
  • Chemical reaction
  • Reactant
  • Product
  • Molecule
  • Reversible rearrangement
  • Stable
  • Energy
  • Reaction rate
  • Absolute zero

Questions

  • Based on your research, what is photochromism?
  • What are some other reactions that depend on light?

Bibliography

Bibliography

For help creating graphs, try this website:

Materials and Equipment

  • StyrofoamTM cups, 12-ounce size (4)
  • Permanent marker
  • UV beads; available online from Carolina Biological, item # 956209 (1 pkg.)
  • Liquid measuring cup
  • Stopwatch
  • Thermometer; available from Carolina Biological, item # 959876
  • Lab notebook
  • Microwave oven
  • Graph paper

Disclaimer: Science Buddies occasionally provides information (such as part numbers, supplier names, and supplier weblinks) to assist our users in locating specialty items for individual projects. The information is provided solely as a convenience to our users. We do our best to make sure that part numbers and descriptions are accurate when first listed. However, since part numbers do change as items are obsoleted or improved, please send us an email if you run across any parts that are no longer available. We also do our best to make sure that any listed supplier provides prompt, courteous service. Science Buddies does participate in affiliate programs with Amazon.comsciencebuddies, Carolina Biological, and AquaPhoenix Education. Proceeds from the affiliate programs help support Science Buddies, a 501( c ) 3 public charity. If you have any comments (positive or negative) related to purchases you've made for science fair projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

  1. Perform this experiment when there is sunlight outside.
  2. Label the Styrofoam cups 1, 2, 3, and 4 with the permanent marker.
  3. Place 10 UV beads into each Styrofoam cup
  4. Add 250 mL of water to each cup, using the following temperatures:
    • Cup # 1: Lukewarm water (20 degrees Celsius)
    • Cup # 2: Ice water (0 degrees Celsius)
    • Cup # 3: Lukewarm water (20 degrees Celsius)
    • Cup # 4: Hot water (60 degrees Celsius)

    Note: Warm the water in the liquid measuring cup in the microwave. Use the thermometer to measure the temperature of the water. Record all data in your lab notebook.
  5. Take cups 2, 3, and 4 outside and expose them to the sunlight for 1 minute. Take the ice out of cup #2 before exposing the UV beads to the sunlight.
  6. Return indoors.
  7. Start the stopwatch immediately after bringing the UV beads back inside.
  8. Observe how long it takes the UV beads to lose their color.
    1. Compare the colors in the UV-exposed beads to the beads in cup # 1 (which were not exposed to UV).
    2. In your lab notebook, record the time at which the beads in cups 2, 3, and 4 lose their color and look like the beads in cup #1.
  9. Repeat steps 3–8 two more times (the beads can be reused many times). This will show that your results are reproducible.
  10. Graph your results.
    1. Convert the temperatures to kelvin (to do this, add 273 to the temperatures in degrees Celsius).
      1. Kelvin is a better unit to use in this science fair project because it is based on absolute zero rather than on arbitrary temperatures, such as the temperature at which water freezes. See the U.S. Metric Association website reference in the Bibliography for more information.
    2. Graph the temperature (kelvin) on the x-axis and the time (in seconds) on the y-axis.
    3. How does increasing the temperature affect how fast the UV beads lose their color?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Try more temperatures, such as 10, 30, 40, 50 degrees Celsius (convert to kelvin: 283 K, 303 K, 313 K, and 323 K).
  • Experiment with different colors of the UV beads. Do UV beads of different colors have varying rates of color loss?
  • Devise a way to perform the procedure at temperatures below 0 degrees Celsius.
  • Based on your results, what temperature change would result in a doubling of the reaction rate? Hint: On your graph, pick two times that vary by two-fold, such as 100 seconds and 50 seconds, and determine what the temperature difference is for those two points.
  • Graph 1/time on the y-axis vs. temperature on the x-axis. Because the rate measures change per unit time, the value for 1/time is proportional to the rate. Does the rate increase in a straight line as the temperature increases?
  • If you want to explore this topic further, look up the Arrhenius equation. It describes mathematically how the rate of a reaction depends on the temperature.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

NASA material scientist

Materials Scientist and Engineer

What makes it possible to create high-technology objects like computers and sports gear? It's the materials inside those products. Materials scientists and engineers develop materials, like metals, ceramics, polymers, and composites, that other engineers need for their designs. Materials scientists and engineers think atomically (meaning they understand things at the nanoscale level), but they design microscopically (at the level of a microscope), and their materials are used macroscopically (at the level the eye can see). From heat shields in space, prosthetic limbs, semiconductors, and sunscreens to snowboards, race cars, hard drives, and baking dishes, materials scientists and engineers make the materials that make life better. Read more
female chemical engineer at work

Chemical Engineer

Chemical engineers solve the problems that affect our everyday lives by applying the principles of chemistry. If you enjoy working in a chemistry laboratory and are interested in developing useful products for people, then a career as a chemical engineer might be in your future. Read more

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity