Jump to main content

Build a Reed Switch Motor

1
2
3
4
5
105 reviews

Abstract

Motors are used in many things you find around your house, like your refrigerator, coffee maker, and even a lawn mower. In this electronics science fair project, you will get to build a simple motor, using a kit, and then test how the number of batteries (amount of voltage) used to power the motor affects its performance.

Summary

Areas of Science
Difficulty
 
Time Required
Average (6-10 days)
Prerequisites
None
Material Availability
Specialty items: You will need a switch motor kit, ready for assembly. See the Materials and Equipment list for details.
Cost
High ($100 - $150)
Safety
Minor injury is possible, so be sure to wear safety goggles. Adult supervision is recommended.
Credits

David B. Whyte, PhD, Science Buddies

Objective

The objective of this science fair project is to build a simple DC motor using an electromagnet and a reed switch. You will explore the effect of voltage on motor speed.

Introduction

Motors that use direct current (DC) voltage are found in many familiar items, such as electric shavers, battery-powered drills, and the fans in laptop computers. DC voltage does not alternate with time. For example, a 9-volt (V) battery has a constant voltage difference between its positive and negative terminals of 9 V. A graph of the voltage at the positive terminal vs. time would be a straight line at 9 V. Alternating current, on the other hand, fluctuates between positive and negative values. The current that powers the outlets in your house is AC current. If you graphed the voltage supplied by the outlet, it would be a sine curve, alternating between positive and negative voltages about 60 times per second (sec). The number of times the AC current changes from positive to negative in 1 sec is called its frequency. The unit for frequency is the hertz (Hz), where 1 Hz is 1 cycle per sec.

In this science fair project, you will make a simple DC motor. The key parts of the DC motor are an electromagnet, a rotating shaft that has attached permanent magnets, and a reed switch. Let's go over each of these separately. In this science fair project, the electromagnet is made by wrapping wire around a nail. When a current passes through the wires that are wrapped around the nail, the nail becomes a magnet. When the current is turned off, the nail loses its magnetism. The strength of the electromagnet depends on the number of times the wire is wrapped around it and on the level of the current. When the electromagnet is turned on, it pushes against the permanent magnets that are attached to a rotating shaft. Permanent magnets' magnetism does not depend on electric current. If you are interested in experimenting with the parameters that govern the strength of electromagnets, check out this Science Buddies project: The Strength of an Electromagnet. You can also read more about all of the topics above in the Science Buddies Electricity, Magnetism, & Electromagnetism Tutorial.

The trick to getting the shaft to spin is to turn the electromagnet on in such a way that it pushes against the permanent magnets, causing the shaft to turn, and then turning the electromagnet off, so that the permanent magnet can freely pass by the electromagnet. This cycle is shown in Figure 1.

Simplified diagram shows the mechanics of a DC motor

The diagram of a DC motor shows a spinning shaft that is turned using an electromagnet. The shaft has two magnets of opposite poles attached to opposite walls, when a magnet moves past an electromagnet the magnetic field pushes the magnet causing the shaft to rotate. When the oppsoite magnet begins to turn towards the electromagnet, the electromagnet is shut off so the magnet can pass freely. The electromagnet is turned back on when the first magnet turns back around into a position where the magnetic field can push it to rotate the shaft.


Figure 1. This diagram shows the principles of operation of a simple DC motor. The electromagnet switches on and off. When it is on, it pushes against the permanent magnets that are attached to the rotating shaft (A and C in the diagram). When the electromagnet is off, the magnets are free to rotate past the electromagnet (B and D in the diagram). The electromagnet is switched on and off by the reed switch. When a magnet is near the reed switch, it causes the switch to close. When the switch is closed, current flows through the wires around the electromagnet, turning it on. When the permanent magnet rotates away from the reed switch, the switch opens, shutting off current to the electromagnet. The cycle repeats continuously. There can be more than two permanent magnets on the rotating shaft. Note that the reed switch is placed somewhat below the midpoint of the rotating shaft so that the impulse given by the electromagnet occurs slightly after the permanent magnet has passed.

This design is well-suited for learning about how electric motors work because of its simplicity. The reed switch responds to nearby magnets. When a magnet gets near it, the reed switch closes. When the reed switch is closed, the electromagnet is turned on. So the magnets attached to the rotating shaft are doing double duty: they close the reed switch when they pass near it, and they respond to the push from the electromagnet when it is switched on.

The electromagnet is set up so that the side near the rotating shaft has the same polarity (north or south pole) as the side of the permanent magnet that faces out from the rotating shaft. In the kit you will buy, the permanent magnets have their south poles facing outward. The electromagnet's south pole is at the end near the rotating shaft. When two magnets are brought close to each other, opposite magnetic fields attract each other and identical magnetic fields repel each other. So when the electromagnet is turned on, it repels the magnet attached to the rotating shaft, providing the force to keep the motor working. The reed switch then opens when the permanent magnet on the opposite side of the shaft rotates away from the reed switch. With the switch open, the permanent magnet approaching the electromagnet can pass by the electromagnet with out being repelled. The cycle of opening and closing of the reed switch is timed so that the electromagnet provides a push, at just the right time, to the passing magnet on the rotating shaft, to keep the shaft spinning.

The experimental procedure is based on a kit you can buy that has all of the parts ready-made. This will allow you to make the motor and start your experiments fairly quickly. Once you have the motor working, you will test how changing the voltage affects the speed of the motor. Making the motor is one goal of this science fair project. The other goal is to determine how the voltage affects the spin rate. To do that, you will need a way to measure how fast the motor is turning. There are a number of ways to do this. The method outlined in the experimental procedure involves using an inexpensive optical tachometer. The tachometer measures the rate at which a spinning object blocks a bright light. By attaching a cardboard "propeller" to your motor, you can measure the spin rate of the rotating shaft.

Terms and Concepts

Questions

Bibliography

One of the variations suggests ways to determine the rotation rate by recording the motor's sound. The sound file can be analyzed using various programs. For example, the program Audacity, a free audio editor and recorder:

Materials and Equipment

Disclaimer: Science Buddies participates in affiliate programs with Home Science Tools, Amazon.com, Carolina Biological, and Jameco Electronics. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity, and keep our resources free for everyone. Our top priority is student learning. If you have any comments (positive or negative) related to purchases you've made for science projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Experimental Procedure

Note Before Beginning: This science fair project requires you to hook up one or more devices in an electrical circuit. Basic help can be found in the Electronics Primer. However, if you do not have experience in putting together electrical circuits you may find it helpful to have someone who can answer questions and help you troubleshoot if your project is not working. A science teacher or parent may be a good resource. If you need to find another mentor, try to find someone who has hobbies like robotics, electronics, or building and fixing computers. You may also need to work your way up to this project by starting with an electronics project that has a lower level of difficulty.
  1. This science fair project involves super glue, so first cover the work surface with newspaper.
  2. Build the motor following the directions that come with the kit.
A battery pack is wired to a homemade DC motor which spins a propeller
Figure 2. Picture of an assembled reed switch motor and the battery case.

Measuring the Motor Speed

  1. Attach a piece of cardboard to the shaft to create your propeller. Try a 10-cm x 3-cm rectangle to begin with, but feel free to experiment with other sizes and shapes. The cardboard propeller should be free to rotate.
  2. Put on the safety goggles. It is a good idea to wear eye protection any time you are working with rapidly spinning objects.
  3. Add all four batteries to the battery holder (for a total of 6 V).
  4. Use the tachometer to measure the rate of rotation.
    1. Follow the directions that come with the tachometer.
    2. The tachometer is sensitive to the 60 Hz (3600 cycles per minute) flicker in artificial light. Make your measurements in a room lit with sunlight.
    3. Remember that the propeller will be counted two times for every one turn of the motor shaft.
  5. Record the spin rate and voltage in your lab notebook.
  6. Repeat the measurement of spin rate at 4.5 V, 3 V, and 1.5 V.
    1. Follow the directions in the motor kit instructions to change the voltage. This involves removing batteries from the battery holder. One battery has 1.5 V, two batteries have 3 V, and 3 batteries have 4.5 V.
    2. You can also try using a variable voltage source.
  7. Repeat your readings so that you have data from at least three trials.
  8. Average your results and record the results in your lab notebook.
  9. Graph the voltage vs. the spin rate.
icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Global Connections

The United Nations Sustainable Development Goals (UNSDGs) are a blueprint to achieve a better and more sustainable future for all.

This project explores topics key to Industry, Innovation and Infrastructure: Build resilient infrastructure, promote sustainable industrialization and foster innovation.

Variations

  • How does adding weight (load) to the propeller affect the spin rate? How does changing the size or shape of the propeller affect its spin rate?
  • Devise a way to measure the torque, or twisting force, of the motor. You might try attaching a string to the motor shaft and seeing how much mass it will lift. How does changing the voltage affect the torque of the motor? (Note: look up the equation that relates torque to the radius of the shaft and the amount of weight lifted).
  • Use a multimeter to measure the voltage and current in the motor circuit. Most models from a hardware or auto supply store will be suitable for this project. You can also buy one online; for example, the Equus 3320 Auto-Ranging Digital Multimeter, available from Amazon.com. How does the spin rate vary with the current through the circuit?
  • Can the motor be used as a generator? How does the spin rate affect the generated voltage?
  • Download Winscope and use your computer to analyze the voltage signals in your motor. This method is inexpensive, gives you very accurate readings for the rate at which the reed switch is cycling, and also provides graphic information about how the voltage varies with time. Two sites where you can download Winscope are provided in the Bibliography. You will need a wire and 3.5-mm jack that connects to your PC. The wire from an inexpensive microphone will work. What does the voltage-time curve look like?
  • Use a stroboscope to determine the spin rate. These tend to be quite expensive, so see if you can borrow one.
  • Another way to measure the spin rate is to record the motor's sound and then analyze the sound file. The sound file can be analyzed using various programs. For example, the program Audacity, a free audio editor and recorder, can be used. Audacity can be downloaded from audacity.sourceforge.net.

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
Just as a potter forms clay, or a steel worker molds molten steel, electrical and electronics engineers gather and shape electricity and use it to make products that transmit power or transmit information. Electrical and electronics engineers may specialize in one of the millions of products that make or use electricity, like cell phones, electric motors, microwaves, medical instruments, airline navigation system, or handheld games. Read more
Career Profile
Electricians are the people who bring electricity to our homes, schools, businesses, public spaces, and streets—lighting up our world, keeping the indoor temperature comfortable, and powering TVs, computers, and all sorts of machines that make life better. Electricians install and maintain the wiring and equipment that carries electricity, and they also fix electrical machines. Read more
Career Profile
Electrical engineering technicians help design, test, and manufacture electrical and electronic equipment. These people are part of the team of engineers and research scientists that keep our high-tech world going and moving forward. Read more
Career Profile
Mechanical engineers are part of your everyday life, designing the spoon you used to eat your breakfast, your breakfast's packaging, the flip-top cap on your toothpaste tube, the zipper on your jacket, the car, bike, or bus you took to school, the chair you sat in, the door handle you grasped and the hinges it opened on, and the ballpoint pen you used to take your test. Virtually every object that you see around you has passed through the hands of a mechanical engineer. Consequently, their… Read more

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "Build a Reed Switch Motor." Science Buddies, 26 Feb. 2022, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p057/electricity-electronics/build-a-reed-switch-motor. Accessed 19 Mar. 2024.

APA Style

Science Buddies Staff. (2022, February 26). Build a Reed Switch Motor. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p057/electricity-electronics/build-a-reed-switch-motor


Last edit date: 2022-02-26
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.