Jump to main content

Which Materials are the Best Conductors?

1
2
3
4
5
987 reviews

Abstract

Electricity powers many of the devices we use every day, from lights to video games and computers. Engineers have to use certain materials to make electrical devices work. In this experiment, you will find out which materials let electricity flow through them (conductors) and which ones prevent electricity from flowing through them (insulators).

Summary

Areas of Science
Difficulty
 
Time Required
Very Short (≤ 1 day)
Prerequisites
None
Material Availability
A kit is available from our partner Home Science Tools. See the Materials section for details.
Cost
Low ($20 - $50)
Safety
Short circuits can get very hot and present a burn hazard. Never connect the positive and negative ends (red and black wires) of the battery pack directly to each other.
Credits
Ben Finio, PhD, Science Buddies
Setup instructions for your Basic Circuits Kit.

Objective

Test different materials to see if they are electrical conductors or insulators.

Introduction

Look around you. You can probably see at least one thing in the room that is powered by electricity. Some of them might be plugged into wall outlets, and others might be powered by batteries. All electrical devices have electrical current, or "flow," of electricity moving through them. The current usually flows through wires and other electrical parts, like the lightbulb in a lamp or the motor in a toy car. These parts combined are called an electrical circuit. Figure 1 shows a basic circuit with a battery and a lightbulb.

Diagram of a closed circuit with a lightbulb and battery
Figure 1. A closed circuit with a battery and a lightbulb. Electrical current is indicated by the yellow arrows.

In order for electricity to flow in a circuit, it must have a complete "loop," or path, through which to flow. In a battery-powered circuit, this loop must connect the positive end of the battery (marked with a "+" symbol) to the negative end of the battery (indicated by a "-" symbol, but this is usually not printed on the battery). This is called a closed circuit, as shown in Figure 1. If any part of the loop is broken, this creates an open circuit and electricity does not flow at all, as shown in Figure 2.

Diagram of an open circuit with a lightbulb and battery
Figure 2. The path for electricity to flow is broken, so this is an open circuit. The lightbulb does not light up because no electricity can flow.

If the positive and negative ends of a battery are connected directly to each other, without anything like a lightbulb or motor in between them, this creates a short circuit, as shown in Figure 3. Short circuits are dangerous because they allow a lot of electrical current to flow, and can cause the battery to get very hot or even explode. You should never connect the two ends of a battery directly to each other.

Diagram of a short circuit with a wire connecting the positive and negative ends of a battery together
Figure 3. A short circuit with the positive and negative ends of a battery connected directly to each other. This can cause the battery to overheat.

What types of materials are circuits made out of? Circuits have to let electrical current flow through them easily. Materials that let electricity flow through them easily are called conductors. Most metals are conductors; however, materials that prevent electricity from flowing are also important for circuits. These materials are called insulators. Most rubbers and plastic are insulators. Insulators are important because they can help protect you from an electric shock when you touch a wire, or help protect a sensitive circuit from damage. For example, the power cord for a lamp consists of metal wires inside a rubber insulator, and an electronic toy might have a plastic case that protects the circuit inside from damage. In this experiment, you will build a simple circuit with a battery and a lightbulb, and use it to test whether common household materials are conductors or insulators.

Terms and Concepts

Questions

Bibliography

Materials and Equipment Buy Kit

Recommended Project Supplies

Get the right supplies — selected and tested to work with this project.

View Kit

Disclaimer: Science Buddies participates in affiliate programs with Home Science Tools, Amazon.com, Carolina Biological, and Jameco Electronics. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity, and keep our resources free for everyone. Our top priority is student learning. If you have any comments (positive or negative) related to purchases you've made for science projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Experimental Procedure

  1. Watch this video for an introduction to your Basic Circuits Kit.
  2. Set up your test circuit, as shown in Figure 4.
    1. Insert three AA batteries into the battery holder (your kit comes with one extra battery). Make sure the "+" symbols on the batteries line up with the "+" symbols inside the battery holder.
    2. Connect a red alligator clip to the exposed metal part of the red wire from battery holder (in electronics, red wires are usually used for the "positive" connection).
    3. Connect a black alligator clip to the exposed metal part of the black wire from the battery holder (in electronics, black wires are usually used for the "negative" connection).
    4. Attach the other end of the black alligator clip to one of the screws on the lightbulb holder. If necessary, use a small Phillips head screwdriver to loosen the screw slightly so it is easier to clip to.
    5. Screw the lightbulb into the bulb holder.
    6. Attach one end of the green alligator clip to the other screw on the bulb holder.
    7. You will connect your test materials to the free ends of the red and green alligator clips.
    8. Test your circuit by touching the exposed metal ends of the red and green alligator clips together. This creates a closed circuit and your lightbulb should light up. If it does not light up, then check the following:
      1. Make sure the lightbulb is screwed tightly into the base.
      2. Make sure none of your alligator clip connections are loose.
      3. Make sure none of your batteries are backwards.
    9. Important: throughout the project, only connect the lightbulb for long enough to assess its brightness, then disconnect it when not in use. Leaving the lightbulb connected for a long time can cause it to burn out prematurely.
An open circuit is made with a battery pack, three alligator clips and a lightbulb
Figure 4. The test circuit for this experiment. The twist ties are not required, but they can help keep your circuit neat by bundling up the alligator clip leads.
  1. Make a data table like Table 1 in your lab notebook.
Material Lightbulb (On or Off?) Conductor or Insulator?
     
     
     
     
     
Table 1. Example data table.
  1. Gather the different household materials and objects you will test. Write their names down in the first column of your data table.
  2. Take your first object and connect opposite sides of it to the free ends of the red and green alligator clips.
    1. If possible, you should "clip" the alligator clips to the objects. This is easy for some objects, like a sheet of paper or aluminum foil; however, it might be difficult for rounded or larger objects, like a coffee mug or a basketball. For larger objects, you can firmly press the metal ends of the alligator clips up against the object to do your tests. See Figure 5.
Two photos of alligator clips attached to paper on the left and pressed against the sides of a mug on the right
Figure 5. To test small or narrow objects, you should clip them in between the alligator clips (left). For larger objects, firmly press the metal ends of the alligator clips against them (right).
  1. Observe whether or not the lightbulb lights up. Record your observation for that material in your data table. Remember to disconnect the material from your circuit as soon as you are done testing it. This will prolong the life of your lightbulb.
  2. Now determine whether the material is a conductor or an insulator. Record your result in your data table. Hint: Look back to the Introduction for the definitions of conductor and insulator. Which one allows electricity to flow, and which one does not?
  3. Repeat steps 4–7 for each of your additional test materials.
  4. Analyze your results. What types of materials (for example, wood, plastic, metal, rubber) are the objects you tested made out of? Which ones caused the lightbulb to turn on? Does this match what you predicted based on your background research about what types of materials are conductors and insulators?

Troubleshooting

For troubleshooting tips, please read our FAQ: Which Materials are the Best Conductors?.

icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Global Connections

The United Nations Sustainable Development Goals (UNSDGs) are a blueprint to achieve a better and more sustainable future for all.

This project explores topics key to Industry, Innovation and Infrastructure: Build resilient infrastructure, promote sustainable industrialization and foster innovation.

Variations

  • In this experiment, your lightbulb was probably either completely off or at full brightness. What if you wanted to control the brightness of the bulb? Could you make a dimmer switch? See the Pencil Resistors and How to Make a Dimmer Switch with a Pencil projects, which can both be done with the parts from your Basic Circuits Kit.
  • Can you think of other circuit parts you could use to test besides a lightbulb? What about a motor or buzzer? See other projects like Electric Play Dough Project 1: Make Your Play Dough Light Up & Buzz! to learn more about other circuit parts.
  • Can you think of other energy sources to use for this experiment besides batteries? For example, what about a solar panel?

Frequently Asked Questions (FAQ)

If you are having trouble with this project, please read the FAQ below. You may find the answer to your question.
Q: Why can't I get my bulb to light up at all?
A: Try these steps below:
  • Make sure you do not have an open circuit. Check to make sure none of your alligator clips are loose, and the lightbulb is screwed tightly into its base.
  • Make sure your batteries are properly inserted into the battery pack. The "+" signs on the batteries should line up with the "+" signs in the battery pack.
  • Finally, try connecting the red and green alligator clips to each other directly, with no pencil or other materials in between, and your bulb should light up. If you connect the alligator clips to a non-conducting material (like paper), the bulb will not light up.
Q: Why did my bulb suddenly stop working in the middle of my experiment?
A: If your bulb was working but suddenly stopped lighting up, it might have burned out. Please contact us at scibuddy@sciencebuddies.org for a replacement. With your new bulb, only leave it connected for long enough to assess its brightness, and disconnect your circuit when not in use.

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
What makes it possible to create high-technology objects like computers and sports gear? It's the materials inside those products. Materials scientists and engineers develop materials, like metals, ceramics, polymers, and composites, that other engineers need for their designs. Materials scientists and engineers think atomically (meaning they understand things at the nanoscale level), but they design microscopically (at the level of a microscope), and their materials are used macroscopically… Read more
Career Profile
Electricians are the people who bring electricity to our homes, schools, businesses, public spaces, and streets—lighting up our world, keeping the indoor temperature comfortable, and powering TVs, computers, and all sorts of machines that make life better. Electricians install and maintain the wiring and equipment that carries electricity, and they also fix electrical machines. Read more
Career Profile
Electrical engineering technicians help design, test, and manufacture electrical and electronic equipment. These people are part of the team of engineers and research scientists that keep our high-tech world going and moving forward. Read more

Contact Us

If you have purchased a kit for this project from Science Buddies, we are pleased to answer any question not addressed by the FAQ above.

In your email, please follow these instructions:
  1. What is your Science Buddies kit order number?
  2. Please describe how you need help as thoroughly as possible:

    Examples

    Good Question I'm trying to do Experimental Procedure step #5, "Scrape the insulation from the wire. . ." How do I know when I've scraped enough?
    Good Question I'm at Experimental Procedure step #7, "Move the magnet back and forth . . ." and the LED is not lighting up.
    Bad Question I don't understand the instructions. Help!
    Good Question I am purchasing my materials. Can I substitute a 1N34 diode for the 1N25 diode called for in the material list?
    Bad Question Can I use a different part?

Contact Us

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "Which Materials are the Best Conductors?" Science Buddies, 18 Nov. 2023, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p018/electricity-electronics/conductors-insulators-basic-circuit?from=AAE. Accessed 19 Mar. 2024.

APA Style

Science Buddies Staff. (2023, November 18). Which Materials are the Best Conductors? Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Elec_p018/electricity-electronics/conductors-insulators-basic-circuit?from=AAE


Last edit date: 2023-11-18
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.