Home Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Measuring Your Taste Threshold

Difficulty
Time Required Very Short (≤ 1 day)
Prerequisites None
Material Availability Readily available
Cost Low ($20 - $50)
Safety No issues

Abstract

Have you ever been to a buffet and found yourself surrounded by a wide variety of taste sensations? People are generally able to discern five basic tastes: sweet, umami (also known as savory), salty, sour, and bitter. How sensitive is a person's tongue for these basic tastes? Is it easier to detect some flavors at low concentrations compared to others? In this human biology science project, you will find out by exploring your taste thresholds for sweetness, saltiness, and sourness. Get ready to find out how low you can go!

Objective

To determine your threshold of taste for sweetness, sourness and saltiness.

Credits

Andrew Olson, Ph.D., Science Buddies

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2013-12-02

Introduction

Our sensory system for taste, or our taste perception, is remarkably sensitive. Not only can we detect compounds at extremely low concentrations, we can also discriminate between molecular compounds that are closely related. For example, for some molecules we can distinguish between different stereoisomers, which are molecules that are made of exactly the same components, but are mirror images of one another. The artificial sweetener aspartame is an example of this. It tastes sweet to us, but its stereoisomer does not. Our noses are similarly sensitive: one stereoisomer of carvone smells of spearmint while its mirror image smells of carraway (Dodd & Castelluci, 1991).

This amazing sensitivity is made possible by our taste buds. Taste buds are located on small bumps on the tongue called papillae, which are shown in Figure 1, below. Each taste bud is made up of about 50 to 150 taste receptor cells. On the surface of these cells are receptors that bind to small molecules related to flavor. The receptors then relay the taste sensation information to the brain. This entire process allows us to discern the five basic tastes.

Human biology and Health  Science Project the papillae (bumps) of the tongue
Figure 1. The arrows in the picture are pointing to papillae, which are small bumps on the tongue. Taste buds are located on the papillae. (Bladebot, 2006)

In this human biology science project, you will determine your own taste thresholds for sweet, sour, and salty solutions. You will start with a 10% solution, and use the process of serial dilution to make a series of solutions, each 10-fold weaker than the preceding one (i.e., 1%, 0.1%, 0.001%, etc.). If done properly, this is an extremely accurate method.

Terms and Concepts

  • Taste perception
  • Taste buds
  • Papillae
  • Serial dilution

Bibliography

For an introduction to the physiology of taste, check out these websites:

Here is an interesting news article about an electronic chemosensor:

Materials and Equipment

  • Table salt, or sodium chloride (10 g)
  • Granulated sugar, or sucrose (10 g)
  • Vinegar (2 mL)
  • Water, preferably distilled
  • Stirring rod or spoon
  • Gram balance, such as the Fast Weigh MS-500-BLK Digital Pocket Scale, 500 by 0.1 G, available from Amazon.com
  • 100 mL graduated cylinder, available from an online supplier such as Carolina Biological catalog #721613.
  • 10 mL graduated cylinder, available from an online supplier such as Carolina Biological catalog #721610.
  • Cotton swabs (at least 12)
  • Paper or plastic cups (at least 12)
  • Paper towels (at least 12)
  • Volunteers
  • Lab notebook

Disclaimer: Science Buddies occasionally provides information (such as part numbers, supplier names, and supplier weblinks) to assist our users in locating specialty items for individual projects. The information is provided solely as a convenience to our users. We do our best to make sure that part numbers and descriptions are accurate when first listed. However, since part numbers do change as items are obsoleted or improved, please send us an email if you run across any parts that are no longer available. We also do our best to make sure that any listed supplier provides prompt, courteous service. Science Buddies does participate in affiliate programs with Amazon.comsciencebuddies, Carolina Biological, and AquaPhoenix Education. Proceeds from the affiliate programs help support Science Buddies, a 501( c ) 3 public charity. If you have any comments (positive or negative) related to purchases you've made for science fair projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

Working with Human Test Subjects

There are special considerations when designing an experiment involving human subjects. Fairs affiliated with Intel International Science and Engineering Fair (ISEF) often require an Informed Consent Form (permission sheet) for every participant who is questioned. Consult the rules and regulations of the science fair that you are entering, prior to performing experiments or surveys. Please refer to the Science Buddies documents Projects Involving Human Subjects and Scientific Review Committee for additional important requirements. If you are working with minors, you must get advance permission from the children's parents or guardians (and teachers if you are performing the test while they are in school) to make sure that it is all right for the children to participate in the science fair project. Here are suggested guidelines for obtaining permission for working with minors:

  1. Write a clear description of your science fair project, what you are studying, and what you hope to learn. Include how the child will be tested. Include a paragraph where you get a parent's or guardian's and/or teacher's signature.
  2. Print out as many copies as you need for each child you will be surveying.
  3. Pass out the permission sheet to the children or to the teachers of the children to give to the parents. You must have permission for all the children in order to be able to use them as test subjects.
  1. Make a data table in your lab notebook like Table 1, below. Use as many columns as you need to determine your taste threshold for each substance.
Substance 10% 1% 0.1% 0.01% etc.
sucrose     
sodium chloride     
vinegar     
Table 1. In your lab notebook, make a data table like this one to record your results in.
  1. Measure 90 ml of distilled water and pour it into a paper or plastic cup. Add 10 grams (g) of granulated sugar. Stir until dissolved. This gives you a 10% (weight/weight, or w/w) sucrose solution.
  2. Rinse your mouth with plain tap water and wipe your tongue dry with a clean paper towel.
  3. Dip a clean cotton swab into the 10% sugar solution and smear it all around your tongue. If you can taste the sweetness, put a + in your data table for 10% sucrose. Note any other observations that you make.
  4. Now measure out 10 ml of the 10% sucrose solution and pour it into a clean paper cup. Add 90 ml of distilled water and stir. (Note: Use a clean stirrer, or else thoroughly rinse and dry the previous stirrer, so that you don't carry over concentrated solution into the dilute solution.) This will give you a 1% sugar solution.
  5. Repeat step 3. Then dip a clean cotton swab into the 1% sugar solution and smear it all around your tongue. If you can taste the sweetness, put a + in your data table for 1% sucrose. Note any other observations that you make.
  6. Continue making serial dilutions (by repeating step 5), rinsing and drying your tongue, and testing each new solution with the cotton swab procedure until you no longer taste the sweetness. Record the results in the data table in your lab notebook. The lowest concentration at which you can still taste the sweetness is your approximate taste threshold.
  7. Repeat steps 2–7 with salt (sodium chloride) and vinegar (main ingredient: acetic acid), separately, instead of using sugar. To make a 10% (volume/volume, or v/v) solution of vinegar, use 2 ml of vinegar and 18 ml of water.
  8. Analyze your results.
    1. Were your thresholds the same for all three tastes, or did you have different thresholds? Can you think of reasonable explanations for your results?
    2. Do sugar solutions that are 10-fold more concentrated taste 10× as sweet? Same question for salt and vinegar solutions.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Repeat this science project using several volunteers. Compare your results. Do some people generally have lower thresholds than other people? Is there variation in which taste has the lowest threshold for people in the group?
  • Is there a difference in taste threshold for iodized vs. non-iodized salt?
  • Do background research to find out how many molecules are in 10 g of salt. Calculate the number of salt molecules that were contained in the lowest-concentration solution which you could taste. If you assume that the cotton swab holds 0.1 ml, how many salt molecules were available on the cotton swab for you to detect? Do the same for sugar, and, if you are really enterprising, for vinegar.
  • In this experiment you used 10-fold serial dilutions to roughly establish your threshold of taste. Design an experiment to determine your threshold with higher precision.
  • Recruit enough volunteers in different age groups to take this threshold of taste test so that you can test the hypothesis that taste threshold changes predictably with age. Do your results support the hypothesis?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

Neurologist adjusting settings on Parkinson patient's neurostimulator

Neurologist

Each time your heart beats, or you breathe, think, dream, smell, see, move, laugh, read, remember, write, or feel something, you are using your nervous system. The nervous system includes your brain, spinal cord, and a huge network of nerves that make electrical connections all over your body. Neurologists are the medical doctors who diagnose and treat problems with the nervous system. They work to restore health to an essential system in the body. Read more
Scientists inspecting special corn oil

Food Scientist or Technologist

There is a fraction of the world's population that doesn't have enough to eat or doesn't have access to food that is nutritionally rich. Food scientists or technologists work to find new sources of food that have the right nutrition levels and that are safe for human consumption. In fact, our nation's food supply depends on food scientists and technologists that test and develop foods that meet and exceed government food safety standards. If you are interested in combining biology, chemistry, and the knowledge that you are helping people, then a career as a food scientist or technologist could be a great choice for you! Read more