Tiling with Spidrons
Abstract
This is a great science fair project for someone who is interested in both mathematics and art. Spidrons are geometric forms made from alternating sequences of equilateral and isosceles (30°, 30°, 120°) triangles. Spidrons were discovered and named by Daniel Erdély in the early 1970's, and have since been studied by mathematicians and artists alike. This project is a great way to learn about the mathematics and art of tiling patterns.Objective
The goal of this science fair project is to find three or more different ways to tile the plane (i.e. an infinite two-dimensional surface) with spidron-based shapes as the tiling elements.
Credits
Andrew Olson, PhD, Science Buddies
Sources
This science fair project was inspired by Jason's entry to the 2007 Sciencepalooza, sponsored by Synopsis.
Cite This Page
MLA Style
APA Style
Share your story with Science Buddies!
I Did This Project! Please log in and let us know how things went.Last edit date: 2013-04-25
Introduction
Sometime in the early 1970's, Daniel Erdély was inspired to doodle a sequence of triangles inside a hexagon. He discovered that he could make a pattern of alternating equilateral and isosceles triangles, and that six of these patterns would fill the entire space inside the hexagon (Figure 1). Erdély put two of these patterns together, back-to-back to make a geometric object that he named a spidron (Figure 2).
Erdély continued to experiment with spidrons. He realized, for example, that the sum of the areas of the sequence of triangles following an equilateral triangle in a spidron is equal to the area of the equilateral triangle itself. He also discovered many patterns for tiling two-dimensional space with spidrons, which is what you will try to do in this project. Mathematicians have a special name for tiling: tessellation. Tesselation has important applications in the study of crystals and quasi-crystals in chemistry and materials science. If you are interested in taking your study of spidrons to three dimensions, you will discover, as Erdély did, that spidrons have amazing properties when folded into three dimensional structures. This is a great project for someone with interests in either math or art.
Terms and Concepts
To do this project, you should do research that enables you to understand the following terms and concepts:
- Spidron
- Tiling (also known as tessellation)
- Symmetry
Questions
- How many ways can you find to tesselate (tile) two-dimensional space with spidron arms?
Bibliography
- Erdely, Daniel. (n.d.). Spidron Workbook. Retrieved December 30, 2009, from http://edan.szinhaz.org//SpidronWorkBook/#1
- edan.szinhaz.org. (n.d.) Spidron System. Retrieved December 30, 2009, from http://edan.szinhaz.org/SpidroNew/
- Peterson, I. (2007, February). Spiraling Triangles. Muse. Retrieved December 30, 2009, from http://www.sciencenewsforkids.org/pages/puzzlezone/muse/muse0207.asp
- Peterson, Ivars. "Swirling Seas, Crystal Balls." ScienceNews. Volume 170, 26 October 2006: 266-268.
Materials and Equipment
- Several sheets of colored paper
- Origami paper is a good choice.
- Colored copy paper or construction paper could also be used.
- Ruler
- Protractor
- Pencil
- Scissors
- Lab notebook
Share your story with Science Buddies!
I Did This Project! Please log in and let us know how things went.Experimental Procedure
- Do your background research so that you are familiar with the terms, concepts, and questions, above.
- Make a bunch of spidrons using various colors of paper. Here is a simple procedure for constructing single spidron arms (i.e., half-spidrons) by inscribing them in a regular hexagon.
- Draw a regular hexagon.
- Connect every other vertex with a straight line (gray lines in the illustration below).
- The lines you draw will create a smaller regular hexagon, inside the first. Repeat the process of connecting every other vertex with a straight line (orange lines in the illustration below).
- Repeat the previous step until the inner hexagon becomes too small to continue.
- You will be able to cut out six spidron arms (colored in blue in the illustration below) from each starting hexagon.
- Tip: remember to make all of your starting hexagons the same size!
- Tip: you could save time by making a spidron arm template from cardstock or cardboard, and then using this with a utility knife to cut spidron arms from colored paper. Careful with knife, and use fresh blades for best results.
- How many different ways can you find to use the half-spidron shapes to make a repeating tiling pattern that could cover a two-dimensional plane? (Remember, simply changing colors doesn't count! You have to find different spatial arrangements of the tiling units.)
Share your story with Science Buddies!
I Did This Project! Please log in and let us know how things went.Variations
- For a more basic investigation of tessellation, see the Science Buddies project Tessellation: Tiling Patterns to Fill a Two-Dimensional Space.
- Advanced. Can you prove that the sum of the areas of the sequence of spidron triangles that follow an equilateral triangle is equal to the area of the equilateral triangle itself?
- Advanced. Can you write a computer program that draws spidrons and allows the user to experiment with different spidron tiling patterns?
- Advanced. One of the amazing properties of spidrons is how they can be folded up into three-dimensional shapes by making mountain and valley folds in the right places. Can you make three-dimensional polyhedra based on spidrons? Can your polyhedra be used to tile in three dimensions? If you're into origami, this could be a great project for you!
- Advanced. Can you come up with an equation that describes the outline of a spidron?
Share your story with Science Buddies!
I Did This Project! Please log in and let us know how things went.Ask an Expert
The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.Ask an Expert
Related Links
If you like this project, you might enjoy exploring these related careers:
Multimedia Artist or Animator
If you've ever watched a cartoon, played a video game, or seen an animated movie, you've seen the work of multimedia artists and animators. People in these careers use computers to create the series of pictures that form the animated images or special effects seen in movies, television programs, and computer games. Read moreMathematician
Mathematicians are part of an ancient tradition of searching for patterns, conjecturing, and figuring out truths based on rigorous deduction. Some mathematicians focus on purely theoretical problems, with no obvious or immediate applications, except to advance our understanding of mathematics, while others focus on applied mathematics, where they try to solve problems in economics, business, science, physics, or engineering. Read moreMath Teacher
Math teachers love mathematics and understand it well, but much more than that, they enjoy sharing their enthusiasm for the language of numbers with students. They use a variety of tools and techniques to help students grasp abstract concepts and show them that math describes the world around them. By helping students conquer fears and anxieties about math, teachers can open up many science and technology career possibilities for students. Teachers make a difference that lasts a lifetime! Read moreLooking for more science fun?
Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.
Find an Activity