Home Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

An Uplifting Project—The Buoyancy of Balloons

Difficulty
Time Required Short (2-5 days)
Prerequisites None
Material Availability Readily available
Cost Average ($50 - $100)
Safety No issues

Abstract

Balloons are a festive addition to many celebrations. You've probably noticed, though, that over a short period of time, helium-filled latex balloons start to lose their buoyancy. So when you're planning your next party, how soon can you buy the balloons in advance before they start deflating? In this science fair project, you will use a simple scale to measure the lift supplied by a set of balloons, and determine the rate of lift decay.

Objective

The objective of this physics science fair project is to measure how the buoyancy of helium-filled latex balloons changes over time.

Credits

David Whyte, PhD, Science Buddies

  • Mylar® is a registered trademark of Dupont Tejjin Films.

Cite This Page

MLA Style

Science Buddies Staff. "An Uplifting Project—The Buoyancy of Balloons" Science Buddies. Science Buddies, 7 Dec. 2012. Web. 25 July 2014 <http://www.sciencebuddies.org/science-fair-projects/project_ideas/Phys_p074.shtml>

APA Style

Science Buddies Staff. (2012, December 7). An Uplifting Project—The Buoyancy of Balloons. Retrieved July 25, 2014 from http://www.sciencebuddies.org/science-fair-projects/project_ideas/Phys_p074.shtml

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2012-12-07

Introduction

Helium-filled balloons float because the helium is lighter than the surrounding air. In other words, the weight of the air displaced by the balloon is greater than the weight of the balloon and the gas inside, so the balloon floats upward.

Balloons
Figure 1. Ascending helium balloons. (Wikipedia, 2009.)
This force, or buoyancy, is exactly the difference in the weight of the balloon and its contents (plus a ribbon, if one is attached), versus the weight of the volume of air displaced.

Latex is a permeable membrane, which means it has very small holes that allow the helium atoms to escape. Helium escapes from latex balloons faster than air does, because of the small size of helium atoms. As the helium trapped inside of a latex balloon slowly escapes, the balloon starts to sink. There is a point at which the buoyancy supplied by the helium just equals the weight of the balloon and its contents (and any attached ribbon), and the balloon hovers in mid air, neither rising nor falling. This is called neutral buoyancy.

In this science fair project, you will use a simple scale and some balloons to investigate the following questions. Does the balloon lose its buoyancy at a constant rate, or does the rate change over time? What is the rate of lift decay?


Terms and Concepts

  • Buoyancy
  • Permeable membrane
  • Atom
  • Neutral buoyancy
  • Lift

Questions

  • How many latex balloons would it take to lift you off the ground? Hint: See the Bibliography.
  • What other lighter-than-air gases can be used for balloons? What are their benefits and drawbacks?
  • Why do latex balloons lose their buoyancy faster than Mylar® balloons do?

Bibliography

Materials and Equipment

  • Metal spoons (3)
  • Masking tape
  • Permanent marker
  • Scale, accurate to 1 gram (g) or less
  • Latex balloons, filled with helium and ribbon attached so you can hold them (9); available at party supply stores and some grocery stores
  • Scissors
  • Lab notebook
  • Graph paper

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

Performing the Experiment

  1. To start, label the three spoons using the masking tape and the permanent marker. Label them A, B, and C.
  2. Weigh each spoon and record the values in your lab notebook.
  3. Attach three balloons to each spoon.
    1. Attach the balloons near the end of the ribbon, so that extra ribbon is not hanging from the spoon.
    2. Trim any extra ribbon with the scissors, as needed.
  4. Weigh each spoon with the balloons attached.
    1. The balloons should be free to float above the scale.
    2. Note the weights in your lab notebook for spoons A, B, and C.
  5. Repeat step 4 every 8 hours, until the balloons have lost most of their buoyancy.
    1. 8 hours is just a suggestion. Use your own judgment about how often to weigh the spoons.
  6. Poke a hole in each balloon to let any remaining helium escape.
  7. Weigh the balloons from the three sets by removing the spoons from the balloons and then weighing each balloon-and-ribbon set (a set is made up of three balloons and three ribbons). Record all data in your lab notebook.

Analyzing Your Data

  1. Calculate the buoyancy of the balloons.
    1. Calculate the difference in weight between each spoon alone and each spoon with the balloons and ribbon attached.
    2. Add the weight of the three empty balloons and their ribbons to get the buoyancy. For example, say the weight of the spoon is 20 g, the weight of the spoon with the balloons and ribbons attached is 15 g , and the weight of the balloons and ribbons is 3 g. Then the total lift supplied by the helium gas equals 20 - 15 + 3 = 8 g. See Equation 1.


Equation 1:

Buoyancy =   weight of spoon − weight of spoon with balloons attached + weight of balloons and ribbon



  1. Graph your data, with time on the x-axis and buoyancy on the y-axis.
  2. Was the rate of buoyancy loss (lift decay) linear over time, or was the rate non-constant? Explain your results.
  3. Repeat the experiment at least two more time so that you have three sets of data.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Measure the volume of the balloons during the experiment. Include these measurements in your graphs. (The equation for the volume of a balloon can be found in Katherine Neer's article in the Bibliography).
  • Compare the rates at which helium and air escape from the balloons by measuring the volumes over time. Try other gases.
  • Use a spreadsheet program to add a trend line to your data. Use the program to determine the equation for the trend line.
  • Experiment with the effect of temperature on lift decay.
  • Measure the atmospheric pressure over the course of your experiments to see if it affects the buoyancy.
  • Experiment with different material for the balloon, such as mylar.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

commercial pilots in cockpit

Pilot

Pilots fly airplanes, helicopters, and other aircraft to accomplish a variety of tasks. While the primary job of most pilots is to fly people and cargo from place to place, 20 percent of all pilots have more specialized jobs, like dropping fire retardant, seeds, or pesticides from the air, or helping law enforcement rescue and transport accident victims, and capture criminals. Pilots enjoy working and helping people in the "third dimension." Read more
aerospace engineer testing airplane model in transonic pressure tunnel

Aerospace Engineer

Humans have always longed to fly and to make other things fly, both through the air and into outer space—aerospace engineers are the people that make those dreams come true. They design, build, and test vehicles like airplanes, helicopters, balloons, rockets, missiles, satellites, and spacecraft. Read more

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity