Jump to main content

Skateboard Extremes: Which Wheels are Best for Speed & Turns?

1
2
3
4
5
94 reviews

Abstract

Skateboarder alert: Extreme performance needed in this project. You can cruise and carve while you investigate which skateboard wheels produce the fastest (and slowest) rides on your terrain in these experiments. You pick the wheels and design the tests you think will produce the most extreme results for speed and turns. Do this project and you can work on your ride and learn some science about the speed, spin, and design of skateboard wheels.

Summary

Areas of Science
Difficulty
 
Time Required
Very Short (≤ 1 day)
Prerequisites
None
Material Availability
Specialty items
Cost
Average ($50 - $100)
Safety
Minor injury possible
Credits

Darlene E. Jenkins, Ph.D.

This project is based on a DragonflyTV episode.

Objective

The goal of this project is to design and do experiments that demonstrate which skateboard wheels are best for speed and maneuverability.

Introduction

The fast moving, slip-sliding sport of skateboarding looks like pure fun, but it's also an activity chock full of science. Those rotating wheels speeding along smooth cement parks or clicking across bumpy sidewalks follow the same laws of friction and rotational momentum as the classic incline plane and trolley in a physics lab. The glide you enjoy after initial push off on your board demonstrates, at least briefly, the constant speed or velocity from inertia, and the slow roll to a stop indicates that frictional forces have finally robbed you of your forward motion. Skateboarding, that high flying sport of athletic anarchists, blends balance, speed, and spunk with real life, in-your-face demonstrations of force, motion, and frictional drag.

This project focuses on testing skateboard wheels. The challenge of this project is to design experiments that can verify the advertised speed and performance differences between skateboard wheels. The results don't have to be huge; tenths of a second may be enough. But the differences have to be consistent and large enough to be detectable in your experiments. It's all about wheel choice and surface selection in this project.

For starters, why not set up longer test runs than they showed in the video so that there's more distance to travel and time to pick up possible differences in speed or performance of the wheels. When selecting the wheels for your tests, consider not just size but other factors that determine speed, grip and maneuverability. For example, the "hardness" of a wheel, its width, and the shape of the wheel's edge (rounded, beveled, or straight) all contribute to how fast a skateboarder can cruise, fly vertically, or turn sharply. The type of surface you skate on is another variable since soft wheels give a smooth but slower ride over bumpy terrain while hard wheels take on slick runs with greater speed but a rougher ride. Your task is to study these variables and come up with the best wheel choices to get the most "extreme" results with your board in your chosen terrain.

Modern day skateboards have come a long way from the homemade clunky contraptions of metal skate wheels nailed to the bottom of a short 2 x 4 board. The wheels, in particular, illustrate the synergy of space-age products with the development of an entire sport centered around flips, turns, verticals and the desire for speed and a sense of flight. Skateboard wheels have morphed into synthetic, highly engineered structures made from resilient, lightweight and durable plastics that encase sleek metal ball bearings to provide the smoothest and fastest spin. These designs have come about to large degree from manufacturing engineers applying a solid understanding of the physics of wheels and rotational motion.

Plastic materials, like the polyurethanes used in skateboard wheels today, are slicker than metal so they decrease the frictional forces between the wheel and the surface. This translates into both a smoother ride and increased speed per push. The relative hardness or softness of the plastic wheels also creates subtle but important differences in how the wheels roll. Generally, hard wheels mean greater speed, while softer wheels travel more slowly because they interact more with the tiny bumps in the road as you move along. As the young boarders in the video suggested, the diameter of a skateboard wheel affects speed as well. A larger wheel rotates over a longer surface distance per revolution than a smaller wheel, so larger wheels produce more speed per push, if all other factors are equal.

Which combination of wheel characteristics do you think will show the most dramatic differences in speed and maneuverability on your board? Should you use large, soft wheels with a square edge and run those against small, hard wheels with a round edge? Or should you use some other combinations of wheels? How will the wheels you select for the flat course hold up in a slalom test of turning ability? Will the slower wheels in the straight away actually turn out to be better in the rapid turns of the timed slalom course or the hard, slow turns of a maneuverability test? Can you explain your wheel choices and their eventual results based on the science of the friction and rotational motion?

To find out, start by doing some background research on skateboard wheels and the basic physics that describes their spin and speed. We've listed some suggested search terms and basic questions in the next section. Organize what you learn or know about skateboard wheel performance according to diameter, hardness, width, and shape using the summary table. That should help keep the basic details straight and make your choices of which wheels to test in your experiments a little easier. Then bolt those wheels to your trucks, hop on your board, and run your experiments to find out if your scientific instincts are as awesome as your skateboarding skills!

Skateboard Wheels Performance Summary
Wheels Effect on Speed Effect on Grip Effect on Turns
I. Diameter (mm)
Large Wheels (60+) N/A N/A
Medium Wheels (56-60) N/A N/A
Small Wheels (52-55) N/A N/A
II. Hardness (A)
Hard (97-105) N/A
Medium (94-96) N/A
Soft (85-93) N/A
III. Width
Wide
Narrow
IV. Edges
Square
Beveled
Round

Terms and Concepts

To do this project, you should do research that enables you to understand the following terms and concepts:

Questions

Bibliography

  • All the basics about skateboard wheels:
    Staff. (2007. All about wheels. Lush Skateboard site. Retrieved July 8, 2007.
  • Very "rad" on line exhibit describing the science of skateboarding:
    Wanner, N. (n.d.). The science and art of skateboard design. Exploratorium Museum. Retrieved July 6, 2007, part of the larger website exhibit, Skateboard Science.
  • Short description of the physics of in-line skating that also applies to skateboarding:
    Staff. (2006). In-line Skating. Newton's Apple website, Twin Cities Public Television. Retrieved July 1, 2007.
  • The idea for this project came from this DragonflyTV episode:
    TPT. (2006). Skateboard by Chuck and Jake. DragonflyTV, Twin Cities Public Television. Retrieved July 7, 2007.

Materials and Equipment

To do this experiment you will need the following materials and equipment:

Experimental Procedure

  1. Select and purchase the two types of skateboard wheels you think will show the greatest difference in speed and maneuverability. Also keep in mind the type of surface you plan to use for your speed test and for the slalom course.
  2. Let your assistant know the day, time, and place of your experiment.
  3. Set up the start and finish lines for your speed test. Use a straight course without bumps. To enhance the opportunity to detect measurable differences between your sets of wheels, use a long test run (at least 40 meters, or approximately 131 feet) to increase the time of each run.
  4. Complete three experiments for each type of skateboard wheels:
    • Experiment 1: Speed test of 40—50 meters
    • Experiment 2: Speed test on a 40—50 meters slalom course with plastic soda bottles
    • Experiment 3: Untimed turning test for maneuverability on the 40—50 meters slalom course with plastic soda bottles
  5. Have the assistant stand to the side of the finish line so he/she will have a clear view when you cross it. The assistance should shout "start" to get you going, and push the stop watch to begin timing.
  6. For each experiment, make at least ten runs. Then switch the skateboard wheels and repeat the experiment.
  7. Note: If you think you will be getting tired before the end of an experiment, make five runs with one set of wheels, change the wheels, and make five run with the second set of wheels. Repeat the same testing sequence once more to obtain a total of ten runs per wheel set. Alternatively, you can separate the experiments into two or three days, but be sure to test both types of wheels each day.
  8. Skate the speed runs as fast as you safely can. Your assistant should record the total time it takes you to travel the distance and cross the finish line. In the slalom speed test, travel as quickly as you can while carving tightly between the bottles. If you knock over more than two bottles, that run should not count. In the slalom maneuverability test, you are not timed. The goal is to go slowly and carve widely so that you don't knock over the soda bottles. Record the number of bottles that do get knocked over in each run.

Analyzing Your Data

  1. Total the seconds for Experiment 1 and also for Experiment 2; calculate the average time for each experiment.
  2. Total the number of bottles knocked over in Experiment 3, and calculate an average number of "knock overs."
  3. Make a bar chart showing the average results for the three experiments. Show the data from the two types of wheels side by side under the three experimental categories.
  4. What were the differences in average times, if any, between the two different wheels in Experiment 1 and Experiment 2? Were the results consistent between the two experiments?
  5. Did you detect any difference in maneuverability between the two different wheels in Experiment 3?
  6. Did your results match your predictions about which type of wheel was best for each experiment?
  7. Were you surprised at your results? Why or why not?
  8. For help with data analysis and setting up tables, see Data Analysis & Graphs.
  9. For a guide on how to summarize your results and write conclusions based on your data, see Conclusions.
icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Variations

  • Another skateboarder. Would a different skater produce similar results with your two types of wheels? Try using a person of different size and weight. How does Newton's Second Law (F=ma) apply when you compare these results to your first set of experiments?
  • Repeat with other wheels. If you don't see any differences in these experiments, what other combination of wheels could you try to test to detect a difference in speed or maneuverability?
  • More tests. What other variations or types of experiments could you design to test your wheels? Would you get similar results if you tested the wheels on a smoother or rougher surface? How about a different spot at a skate park?
  • Physics of skateboard tricks. Research and explain the physics involved in doing an "ollie" and a "kickflip." What forces push the boarder and the board up, sustain both in the air, cause rotations of the board, and bring both back to the ground at the same time?

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
Mechanical engineers are part of your everyday life, designing the spoon you used to eat your breakfast, your breakfast's packaging, the flip-top cap on your toothpaste tube, the zipper on your jacket, the car, bike, or bus you took to school, the chair you sat in, the door handle you grasped and the hinges it opened on, and the ballpoint pen you used to take your test. Virtually every object that you see around you has passed through the hands of a mechanical engineer. Consequently, their… Read more
Career Profile
Physicists have a big goal in mind—to understand the nature of the entire universe and everything in it! To reach that goal, they observe and measure natural events seen on Earth and in the universe, and then develop theories, using mathematics, to explain why those phenomena occur. Physicists take on the challenge of explaining events that happen on the grandest scale imaginable to those that happen at the level of the smallest atomic particles. Their theories are then applied to… Read more
Career Profile
Our universe is full of matter and energy, and how that matter and energy moves and interacts in space and time is the subject of physics. Physics teachers spend their days showing and explaining the marvels of physics, which underlies all the other science subjects, including biology, chemistry, Earth and space science. Their work serves to develop the next generation of scientists and engineers, including all healthcare professionals. They also help all students better understand their… Read more
Career Profile
What makes it possible to create high-technology objects like computers and sports gear? It's the materials inside those products. Materials scientists and engineers develop materials, like metals, ceramics, polymers, and composites, that other engineers need for their designs. Materials scientists and engineers think atomically (meaning they understand things at the nanoscale level), but they design microscopically (at the level of a microscope), and their materials are used macroscopically… Read more

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "Skateboard Extremes: Which Wheels are Best for Speed & Turns?" Science Buddies, 17 May 2023, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Sports_p018/sports-science/skateboard-which-wheels-are-best-for-speed-turns. Accessed 19 Mar. 2024.

APA Style

Science Buddies Staff. (2023, May 17). Skateboard Extremes: Which Wheels are Best for Speed & Turns? Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Sports_p018/sports-science/skateboard-which-wheels-are-best-for-speed-turns


Last edit date: 2023-05-17
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.