Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Bouncing Basketballs: How Much Energy Does Dribbling Take?

TWC basketball
Difficulty
Time Required Very Short (≤ 1 day)
Prerequisites None
Material Availability Readily available. See the Materials and Equipment list for details.
Cost Very Low (under $20)
Safety No issues

Abstract

Playing basketball can be hard work. Players not only constantly run around the court, but just dribbling the basketball takes a lot of effort, too. Why is that? It has to do with how the basketball bounces. When the ball hits the court, its bounce actually loses momentum by transferring some of its energy into a different form. This means that to keep the ball bouncing, players must continually put more energy into the ball. In this sports science project, you will determine how high a basketball bounces on different surfaces relative to the height from which it was dropped. Which surface enables the basketball to bounce the highest, meaning which requires the least amount of energy from a player to keep on dribbling the ball? Grab a basketball and try this science project idea to find out!

Objective

Determine how different surfaces affect how high a basketball bounces relative to the height it was dropped from.

Credits

Teisha Rowland, PhD, Science Buddies

Cite This Page

MLA Style

Science Buddies Staff. "Bouncing Basketballs: How Much Energy Does Dribbling Take?" Science Buddies. Science Buddies, 30 June 2014. Web. 20 Aug. 2014 <http://www.sciencebuddies.org/science-fair-projects/project_ideas/Sports_p037.shtml>

APA Style

Science Buddies Staff. (2014, June 30). Bouncing Basketballs: How Much Energy Does Dribbling Take?. Retrieved August 20, 2014 from http://www.sciencebuddies.org/science-fair-projects/project_ideas/Sports_p037.shtml

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Last edit date: 2014-06-30

Introduction

Bounce, bounce, swish! Playing a game of basketball is hard work, and one part of that workout comes from just dribbling the ball. In Figure 1 below, you can see Kobe Bryant, playing on the U.S. men's Olympic team, dribbling a ball. Why does it take effort to dribble the ball? When a basketball hits the ground (and as it flies through the air), it actually transforms some of its energy to another form. If players do not put enough energy back into the ball, they will not be able to dribble it effectively.

Kobe Bryant Basketball player in the middle of dribbling the ball

Figure 1. When a player dribbles a basketball, as Kobe Bryant does here on the 2012 U.S. men's Olympic team, the ball actually transfers some of its energy on each bounce (Airman 1st Class Daniel Hughes, 2012).

When a basketball bounces, it has two different types of energy: kinetic energy and potential energy. Kinetic energy is the energy an object has due to motion. Any object that is moving has kinetic energy. A fast-moving basketball has more kinetic energy than a slow-moving basketball. And a basketball that is not moving at all has no kinetic energy. Potential energy is the energy stored in an object due to its height above the ground. (A basketball resting on the floor has no potential energy.) For example, when you hold a basketball at waist level, it has some potential energy. If you hold it higher, such as up over your head, it has even more potential energy. If you drop the basketball, the force of gravity pulls it down, and as the ball falls, its potential energy is converted to kinetic energy. As the ball approaches the ground, its potential energy decreases. But the ball also speeds up, so its kinetic energy increases.

So what do kinetic energy and potential energy have to do with how a basketball bounces on the court? As mentioned earlier, when the basketball hits the court's floor, it appear to "lose" some energy—what really happens is that some kinetic energy gets converted into energy in the form of sound, heat, and briefly changing the shape of the ball (flattening it slightly). Some of the energy is also absorbed by the court's surface. When a collision occurs where kinetic energy is lost, it is called an inelastic collision. (On the other hand, an elastic collision is when kinetic energy is conserved—it is the same before and after the collision.) When a basketball bounces (without being pushed down), it does not go all the way back up to its original height, as shown in Figure 2 below. This is because the basketball had an inelastic collision with the ground. After a few bounces, it stops bouncing completely. The energy has left the ball!

Images of a bouncing ball taken with a stroboscopic flash at 25 images per second

Figure 2. A bouncing ball has both kinetic and potential energy. As it bounces, it loses kinetic energy, so each bounce is not as high as the one before it. (Michael Maggs and Richard Bartz, 2007)

One factor that can affect the basketball's inelastic collision with the ground is the type of surface the ball collides with. The surface affects just how much kinetic energy is "lost," or transformed (technically the law of conservation of energy states that energy cannot be lost, but it can change form) and this determines how much energy a player has to put back into the ball to keep it bouncing. In inelastic collisions, different surfaces absorb different amounts of energy. How do you think a hard surface, like concrete, absorbs energy compared to a soft surface, like carpet? In this sports science project, you will determine how high a basketball bounces on different surfaces relative to the height from which it is dropped. Which surface will absorb the least amount of energy and allow the basketball to bounce the highest? Grab a basketball and get ready to find out!

Terms and Concepts

  • Energy
  • Kinetic energy
  • Potential energy
  • Gravity
  • Inelastic collision

Questions

  • In a typical game of basketball, when does the ball have more kinetic energy than potential energy and vice versa?
  • Why does a basketball eventually stop bouncing if you just let it go and do not dribble it?
  • What examples of inelastic collisions have you seen? How is the energy transformed?
  • What surface will absorb more energy, a soft or hard one? Why?

Bibliography

To find out more about kinetic energy, check out this webpage:

This webpage has additional information on elastic and inelastic collisions:

This article discusses some of the physics of dribbling a basketball:

Learn more about the science of basketball with this easy-to-read guide:

For help creating graphs, try this website:

Materials and Equipment

  • Different surfaces to bounce a basketball on (at least 3). They should be steady, fixed surfaces. Some examples include carpet, concrete, grass, linoleum, and a basketball court. The surface needs to be flat and next to a wall or other large surface perpendicular to it. Pick at least one hard surface and one soft surface.
  • Tape measure, metric
  • Painter's tape. This is available at hardware stores or online through sellers such as Amazon.com.
  • Video camera. A video camera on a cell phone should work fine.
  • Optional: Note cards, index cards, sheets of paper, or something else to write trial numbers on (10).
  • Volunteer to videotape the experiments, or a tripod. If you use a tripod, you will need a surface nearby, such as a chair, to set the tripod and camera on. GorillaPods are an example of inexpensive, small types of tripods available through Amazon.com.
  • Basketball
  • Access to a computer or large screen to watch your recorded videos on
  • Lab notebook

Disclaimer: Science Buddies occasionally provides information (such as part numbers, supplier names, and supplier weblinks) to assist our users in locating specialty items for individual projects. The information is provided solely as a convenience to our users. We do our best to make sure that part numbers and descriptions are accurate when first listed. However, since part numbers do change as items are obsoleted or improved, please send us an email if you run across any parts that are no longer available. We also do our best to make sure that any listed supplier provides prompt, courteous service. Science Buddies does participate in affiliate programs with Amazon.comsciencebuddies, Carolina Biological, and AquaPhoenix Education. Proceeds from the affiliate programs help support Science Buddies, a 501( c ) 3 public charity. If you have any comments (positive or negative) related to purchases you've made for science fair projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

Videotaping the Basketball Bounces

  1. Prepare the wall, or other vertical panel, next to the first surface you want to test so that you can measure the height of the basketball's bounce.
    1. On the wall next to the surface, use a tape measure and the blue painter's tape to mark every 20 centimeters (cm), starting from the floor and going up to 100 cm. You should end up with five tape marks, as shown in Figure 3.
    2. Note: You can make the tape marks longer than the ones in Figure 3, so they will be easier to see in the video recording. Remember to put the top edge of the tape at the every 20 cm mark.
Picture of tape marks on a wall 20 cm apart.

Figure 3. On a wall or other panel next to the surface you want to test, place strips of painter's tape every 20 cm, starting from the floor and going up to 100 cm. The test surface shown here is linoleum, and the tape was placed on a refrigerator.

  1. Set up the video camera so that all of the marked measurements and the floor are in view. It is best to record the bounce as straight on, or as evenly framed in the viewfinder, as possible. You can either have a volunteer run the camera for you, or set the camera up on a tripod.
    1. Tip: If you use a mini tripod, you need a raised surface nearby, such as a chair, to set the tripod and camera on.
  2. Test the basketball on the surface:
    1. Either ask your volunteer to start the video camera or, if you do not have a volunteer, begin recording with the video camera on its tripod.
    2. If you are using note cards to visually keep track of your trials, show a note card with the trial number written on it in front of the camera briefly, before you do the experiment. Alternatively, you can just say the trial number so you can hear it later on the recording. (The first trial you do will be Trial 1.)
    3. Hold the basketball so that the bottom of it is lined up with the top edge of the highest tape mark you made, as shown in Figure 4. Also hold the ball close to the wall, not more than about 5 cm away.
      1. Make sure your body is not blocking the camera's view of the basketball and the tape-marked wall.
      2. Tip: If you have a volunteer helping you, ask them to check if the bottom of the basketball looks lined up with the top edge of the tape mark when looking through the camera.
    4. Drop the basketball. (Do not push it down.)
    5. Let the basketball bounce back up and then hit the ground a second time before you catch it in your hands and stop recording it.
Picture of a basketball being held above tape marks on a wall.

Figure 4. To record the basketball's bounce, hold it so that the bottom of the ball is lined up with the top tape mark, at 100 cm, before dropping the ball.

  1. Repeat step 3 at least nine more times with the surface you just tested, for a total of at least ten trials of this surface.
    1. If, in any of the trials, it looks as if the ball did not bounce straight back up, but went slightly to the side, then do an additional trial.
  2. Repeat steps 1 to 4 with the other surfaces you wanted to test.
    1. You need to test at least three surfaces total, including at least one hard and one soft surface. The surfaces you test should all be flat.
    2. For consistent results, try to hold the basketball for each trial the same distance from the wall and also position the camera at the same approximate height (keeping the camera and tripod placed on the same chair and then moving the chair to the new surface is a good way to do this).
    3. Note: If you are testing a surface that is at a very different temperature (such as concrete outside on a cold day), you will want to do your trials quickly so that the ball does not change temperature. A change in the ball's temperature can affect how it bounces. You could try doing one trial at a time and bringing the basketball inside in between the trials to let it warm back up.

Analyzing Your Results

  1. Once you have finished testing the surfaces, make a data table in your lab notebook similar to Table 1. You will record your data in this data table. Table 1 has already been partly filled in as an example — fill in the exact surfaces you tested in your own data table. For each surface, describe how hard it is in the "Hardness" column. See examples in Table 1.
 SurfaceHardness Drop Height (cm) Bounce Height (cm) Height Difference (cm) Average Height Difference (cm)
Trial 1 Carpet Soft     
Trial 2   
Trial 3   
etc.   
Trial 1 Wood Hard     
Trial 2   
Trial 3   
etc.   
Trial 1 Concrete Very Hard     
Trial 2   
Trial 3   
etc.   

Table 1. In your lab notebook, make a data table like this one to record your results.

  1. Now watch your videos closely and fill in the "Drop Height (cm)" and "Bounce Height (cm)" columns in your data table with your results. Watch your videos on a computer or other large screen so you can make detailed observations. Because the actual drop heights and bounce heights will vary slightly from trial to trial, you need to determine them by examining the video carefully.
    1. Watch the videos for each trial using slow motion and/or pause the recording right before the basketball is dropped, and then when it is at the highest point in its first bounce.
      1. Right before dropping the ball, it is at its drop height.
      2. When the ball is at its highest point in its first bounce, it is at its bounce height.
    2. Do your best to use the tape marks on the wall to help you estimate the drop height and the bounce height.
    3. Always measure the drop height and the bounce height from the bottom of the basketball.
    4. The drop height should be close to 100 cm, but you should review the videos to see if it was actually a little above or below 100 cm. For example, in one trial it might have been at about 105 cm, whereas in another trial it could have been closer to 95 cm.
    5. Do not count any trials where it looks as if the basketball did not bounce straight up, but instead went off to the side.
  2. Calculate the height difference for each trial and note it in your data table. To calculate the height difference, subtract the bounce height from the drop height.
    1. For example, if your drop height was 105 cm and your bounce height was 60 cm, your height difference would be 45 cm (since 105 cm - 60 cm = 45 cm).
  3. Calculate the average height difference for each surface and record this in your data table. Do this by calculating the average height difference for all of the trials for a given surface.
    1. For example, if your height difference for ten trials with a surface were 60 cm, 63 cm, 65 cm, 64 cm, 61 cm, 60 cm, 60 cm, 65 cm, 63 cm, and 62 cm, your average height difference for that surface would be 62 cm (the sum of these numbers divided by ten, since there were ten trials).
  4. Make a bar graph of the average height difference for each surface.
    1. Put the name of the surface on the horizontal axis (x-axis) and the average height difference (in cm) on the vertical axis (y-axis).
    2. You can make the graph by hand or use a website like Create a Graph to make a graph on the computer and print it.
  5. Look at your data and your graph and analyze your results.
    1. How high did the basketball bounce relative to its drop height when dropped on the different surfaces? Which surface enabled the ball to retain the greatest height relative to the drop height, and bounce the highest? Which surface caused the ball to lose the most height?
    2. Based on your results, which surface do you think absorbed the least amount of energy from the basketball, enabling the ball to bounce the highest?
    3. Can you use your results to help explain why a basketball court has the surface that it does?

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


Variations

  • Try this science project again, but instead of investigating different surfaces, try bouncing a basketball at different temperatures. You could try storing a basketball in a refrigerator or freezer, and then bouncing it. Compare its bounce height to a basketball that was stored at room temperature. How do the bounce heights compare when the basketball is at different temperatures? Tip: Be sure to do the experiments quickly after removing the basketball from the refrigerator or freezer, because the basketball will quickly warm up again.
  • You know that a basketball loses kinetic energy by transferring it to other forms when the ball bounces, but just how many bounces can a basketball make before losing all of its kinetic energy and stopping bouncing? And how does this change if you alter some factors, such as the surface the basketball bounces on or the drop height? Design an experiment to investigate how many bounces a basketball can make and how various factors affect that number. You will also want to measure how high each consecutive bounce is. You could then make a graph of bounce height versus bounce number. Give it a try!
  • How do different balls bounce compared with each other? You can try this science project again, but just pick one surface to test and try a variety of different types of balls, such as bouncy balls, soccer balls, tennis balls, and others.
  • How does a punctured basketball (or soccer ball) bounce compared to one that is not punctured? Try this science project again, but pick one surface to test and first try a ball that is not punctured, then puncture the ball and try it again.
  • When the basketball hits the ground, energy is transferred to the floor, converted in the form of heat and sound. Design an experiment to investigate one (or more) of the other ways that kinetic energy can be lost by changing to another form of energy, such as by measuring how loudly the ball hits the ground, or how much the ball heats up. Does the surface the ball is bounced on affect how the energy is lost?
  • There are equations you can use to actually calculate potential energy and kinetic energy. You can use Equation 1 below to calculate the potential energy of the basketball when you drop it. You could try measuring the bounce height of the basketball when it is dropped from different heights (but always on the same surface) and calculate how much potential energy it has each time it is dropped. How does its potential energy change when you change its drop height? How does this affect its bounce height? How much energy is transformed on each bounce?

Equation 1:

  • PE = potential energy (in joules [J])
  • m = mass of the basketball (in kilograms [kg])
  • g = acceleration due to gravity, which is 9.81 meters per second squared (m/s²)
  • h = height (in meters)

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

Female physicist working

Physicist

Physicists have a big goal in mind—to understand the nature of the entire universe and everything in it! To reach that goal, they observe and measure natural events seen on Earth and in the universe, and then develop theories, using mathematics, to explain why those phenomena occur. Physicists take on the challenge of explaining events that happen on the grandest scale imaginable to those that happen at the level of the smallest atomic particles. Their theories are then applied to human-scale projects to bring people new technologies, like computers, lasers, and fusion energy. Read more
physics teacher helping student model a nanostructure

Physics Teacher

Our universe is full of matter and energy, and how that matter and energy moves and interacts in space and time is the subject of physics. Physics teachers spend their days showing and explaining the marvels of physics, which underlies all the other science subjects, including biology, chemistry, Earth and space science. Their work serves to develop the next generation of scientists and engineers, including all healthcare professionals. They also help all students better understand their physical world and how it works in their everyday lives, as well as how to become better citizens by understanding the process of scientific research. Read more
Female athletic trainer helping woman lift weights.

Athletic Trainer

Sports injuries can be painful and debilitating. Athletic trainers help athletes, and other physically active people, avoid such injuries, while also working to improve their strength and conditioning. Should a sports injury occur, athletic trainers help to evaluate the injury, determine the treatment needed, and design a fitness regime to rehabilitate the athlete so he or she is ready to go out and compete again. Read more
Mechanical engineer building prototype

Mechanical Engineer

Mechanical engineers are part of your everyday life, designing the spoon you used to eat your breakfast, your breakfast's packaging, the flip-top cap on your toothpaste tube, the zipper on your jacket, the car, bike, or bus you took to school, the chair you sat in, the door handle you grasped and the hinges it opened on, and the ballpoint pen you used to take your test. Virtually every object that you see around you has passed through the hands of a mechanical engineer. Consequently, their skills are in demand to design millions of different products in almost every type of industry. Read more

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity