The arbelos is the white-shaded region between the three semicircles in the illustration at right. In this project, you'll prove an interesting method for determining the area of the arbelos.
Read more

Math_p012

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

Must understand the concept and method of a mathematical proof

Here is a project that combines Computer Science and Mathematics. The semicircle has two tangent lines that meet at point T. You need to prove that a line drawn from A to T bisects CD. You'll also learn how to create an interactive diagram to illustrate your proof, using an applet that runs in your Web browser. If you like solving problems and thinking logically, you'll like this project.
Read more

CompSci_p009

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

You should either currently be taking or have already completed a first course in geometry. You must understand the concept and method of a mathematical proof.

Material Availability

Readily available (laptop computer helpful for live demonstration)

This is an interesting geometry project that goes back to the time of Archimedes, the famous Greek mathematician. You can combine this mathematical project with computer science and take this ancient problem into the twenty-first century with a dynamic diagram using the geometry applet.
Read more

Math_p018

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

You should either currently be taking or have already completed a first course in geometry. You must understand the concept and method of a mathematical proof.

Here is a challenging problem for anyone with an interest in geometry. This project requires background research to solve it, but it is an excellent illustration of visual thinking in mathematics.
Figure 1 below shows a series of circles (iC₁, iC₂, iC₃, ..., iC₃₀), inscribed inside an arbelos. What is an arbelos? The arbelos is the white region in the figure, bounded by three semicircles. The diameters of the three semicircles are all on the same line segment, AC,…
Read more

Math_p011

+ More Details

- Less Details

Time Required

Average (6-10 days)

Prerequisites

Good grasp of Euclidean geometry, a firm understanding of how to construct a mathematical proof, determination

Here is a project that combines Computer Science and Mathematics. Prove a method for inscribing a circle within a triangle (as shown). You'll also learn how to create an interactive diagram to illustrate your proof, using an applet that runs in your Web browser. If you like solving problems and thinking logically, you'll like this project.
Read more

CompSci_p004

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

Must understand the concept and method of a mathematical proof

Material Availability

Readily available (laptop computer helpful for live demonstration)

Here is a project that combines Computer Science and Mathematics. The two circles are tangent to one another at point A. Their diameters are parallel. Prove that points A, D and F are co-linear. You'll also learn how to create an interactive diagram to illustrate your proof, using an applet that runs in your Web browser. If you like solving problems and thinking logically, you'll like this project.
Read more

CompSci_p008

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

You should either currently be taking or have already completed a first course in geometry. You must understand the concept and method of a mathematical proof.

Material Availability

Readily available (laptop computer helpful for live demonstration)

Here is a project that combines Computer Science and Mathematics. Prove a method for circumscribing a circle about a triangle (as shown). You'll also learn how to create an interactive diagram to illustrate your proof, using an applet that runs in your Web browser. If you like solving problems and thinking logically, you'll like this project.
Read more

CompSci_p007

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

Must understand the concept and method of a mathematical proof

Material Availability

Readily available (laptop computer helpful for live demonstration)

How big a ruler would you need to measure the circumference of the Earth? Did you know that you can do it with a yardstick? (And you won't have to travel all the way around the world!)
Read more

Astro_p018

+ More Details

- Less Details

Time Required

Short (2-5 days)

Prerequisites

You will need to understand some basic principles of geometry for this project. You will need a friend or relative in a distant city to make a shadow measurement for you on the same day you make yours. Both of you will need clear weather.

If you've played catch with both Aerobie flying rings and Frisbees, you know that the rings fly much further than the Frisbees with the same throwing effort. Why is that? Investigate the aerodynamics of flying rings and flying disks and find out!
Read more

A magic square is an arrangement of numbers from 1 to n2 in an n x n matrix. In a magic square each number occurs exactly once such that the sum of the entries of any row, column, or main diagonal is the same. You can make several magic squares and investigate the different properties of the square. Can you make an algorithm for constructing a Magic Square? Can you show that the sum of the entries of any row, column, or main diagonal must be n(n2+1)/2? Are there any other hidden properties of a…
Read more