Home Store Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students
Create Assignment

It's Raining, It's Pouring: Chemical Analysis of Rainwater

Time Required Very Long (1+ months)
Prerequisites Must be familiar with titration or be able to learn how titration is used in this experiment
Material Availability Readily available
Cost Low ($20 - $50)
Safety No issues


Here is an interesting project that could be approached from several different scientific angles: Environmental Science, Weather & Atmosphere, Chemistry, or Plant Biology. You can probably think of your own variations to emphasize the scientific area that most interests you.


The goal of this project is to assess the water quality of rainwater collected from different geographical areas. The water quality measures used in this project are hardness, pH, and plant growth. Additional measures could be chosen to expand this project.


Andrew Olson, Ph.D., Science Buddies


This project was based on:

Cite This Page

MLA Style

Science Buddies Staff. "It's Raining, It's Pouring: Chemical Analysis of Rainwater" Science Buddies. Science Buddies, 28 July 2017. Web. 16 Aug. 2017 <https://www.sciencebuddies.org/science-fair-projects/project-ideas/EnvSci_p015/environmental-science/chemical-analysis-of-rainwater?fave=no&isb=c2lkOjEsaWE6RW52U2NpLHA6MixyaWQ6MTA1MzE5MDY&from=TSW>

APA Style

Science Buddies Staff. (2017, July 28). It's Raining, It's Pouring: Chemical Analysis of Rainwater. Retrieved August 16, 2017 from https://www.sciencebuddies.org/science-fair-projects/project-ideas/EnvSci_p015/environmental-science/chemical-analysis-of-rainwater?fave=no&isb=c2lkOjEsaWE6RW52U2NpLHA6MixyaWQ6MTA1MzE5MDY&from=TSW

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Last edit date: 2017-07-28


Is the chemistry of rainwater from different geographical regions similar or different? How does rainwater chemistry relate to that of local surface water? How is rainwater chemistry affected by large-scale weather patterns? Does rainwater chemistry affect the growth of plants? These are some of the many questions you could choose to pursue with this project.

This project is based on Jonathan Allison's 2003 California State Science Fair entry. Here is how Jonathan summarized his experimental procedure: "I contacted friends and family from 11 different cities in the United States and asked them if they could help me by collecting rainwater from their city. After they collected it, they shipped it back to me. Then I tested the rainwater for hardness, using the chemical process of titration. Next I tested the rainwater for pH levels. Then I planted radish seeds in potting soil and watered each set of seedlings with rainwater from a different city. I observed, measured and recorded any growth or changes daily for seven days." (Allison, 2003)

Water Hardness

Water hardness is a measure of dissolved compounds (e.g., magnesium carbonate, calcium carbonate) in the water. These compounds can precipitate out in boilers and water heaters (scaling). Hard water makes less suds with soap and detergent, so you need to use more soap and detergent to get clothes and dishes clean with hard water. General guidelines for classification of waters are: 0 to 60 mg/L (milligrams per liter) as calcium carbonate is classified as soft; 61 to 120 mg/L as moderately hard; 121 to 180 mg/L as hard; and more than 180 mg/L as very hard (USGS, date unknown).

Figures 1 and 2 show USGS water hardness data for the continental United States. Figure 1 is a histogram showing the mean hardness data for each of the 344 stations sampled. Figure 2 is a map of the U.S., showing the regional patterns of groundwater hardness. In both cases, the data is from 1975, but the patterns shown have proven to be stable over time.

Histogram of U.S. groundwater hardness from 344 collection stations.
Figure 1. Histogram of U.S. groundwater hardness from 344 collection stations (USGS, 1975 data).
Map of U.S. groundwater hardness from 344 collection stations.
Figure 2. Map of U.S. groundwater hardness from 344 collection stations (USGS, 1975 data).


Acidity and alkalinity are measured with a logarithmic scale called pH. pH is the negative logarithm of the hydrogen ion concentration:

pH = −log [H+] .

What this equation means is for each 1-unit change in pH, the hydrogen ion concentration changes ten-fold. Pure water has a neutral pH of 7. pH values lower than 7 are acidic, and pH values higher than 7 are alkaline (basic). Table 1 has examples of substances with different pH values (Decelles, 2002; Environment Canada, 2002; EPA, date unknown).

Table 1. The pH Scale: Some Examples
pH Value H+ Concentration
Relative to Pure Water
0 10 000 000 battery acid
1 1 000 000 sulfuric acid
2 100 000 lemon juice, vinegar
3 10 000 orange juice, soda
4 1 000 tomato juice, acid rain
5 100 black coffee, bananas
6 10 urine, milk
7 1 pure water
8 0.1 sea water, eggs
9 0.01 baking soda
10 0.001 Great Salt Lake, milk of magnesia
11 0.000 1 ammonia solution
12 0.000 01 soapy water
13 0.000 001 bleach, oven cleaner
14 0.000 000 1 liquid drain cleaner

Figure 3 shows a map of the average pH of precipitation in the continental U.S. for the year 1992. "The areas of greatest acidity (lowest pH values) are located in the Northeastern United States. This pattern of high acidity is caused by the large number of cities, the dense population, and the concentration of power and industrial plants in the Northeast. In addition, the prevailing wind direction brings storms and pollution to the Northeast from the Midwest, and dust from the soil and rocks in the Northeastern United States is less likely to neutralize acidity in the rain." (USGS, 1997)

Map of U.S. annual average precipitation pH (1992 data).
Figure 3. Map of U.S. annual average precipitation pH for 1992. (USGS, 1997).

Plant Growth

Most plants prefer soil that is near neutral pH. There are particular varieties (strawberries, azaleas and rhododendrons, for example) that prefer acidic soil. Soil pH also influences how readily available many soil nutrients are to plants.

Terms and Concepts

To do this project, you should do research that enables you to understand the following terms and concepts:

  • titration,
  • water hardness,
  • pH.

More advanced students will also want to understand the following terms and concepts:

  • molarity,
  • stoichiometry.


News Feed on This Topic

, ,
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Materials and Equipment

  • This project requires planning ahead. Remember that it will take some time for your volunteers to collect samples and send them to you. You also need to allow time (at least one week) for the plant growth experiment once you have received all of the samples. Start early and make sure your volunteers send their samples in a timely manner!
    • Where to get samples? You will need to obtain rainwater samples from a wide geographical area. Consult the maps in the Introduction for historical patterns of variation. Ask friends and relatives to collect samples for you.
    • How much water do I need? Check your test kit instructions to see how much water is required for each test (usually about 5 ml). You will want to repeat your tests for each sample at least 3 times to assure that your results are consistent. So you'll need a minimum of 30 ml just for testing (best to plan on more). You will also need water for the plant growth experiment. Calculate how much water you will need for plant growth, and add 50 ml for testing purposes. This is how much rainwater each of your volunteers will have to send to you.
    • How should my volunteers collect rainwater samples? Simply putting a jar out on the lawn during a rainstorm is not going to be very efficient. In order to get enough water, your volunteers need a large catchment area. Probably the most straightforward solution is to collect water from the roof, by placing a collection jar underneath a downspout.
    • Make sure your volunteers label the water sample with the date and location from which it was collected.
  • For performing the water quality tests, the simplest method is to use a pre-packaged kit designed for testing aquarium water. There are several different brands available. You should be able to find a choice at a local pet store that sells fish. The kit will say how many water samples it will test. You should be able to find kits to test 50 samples for about $10. The kits you need for this project are:
    • general hardness (GH) test kit, available from an online supplier such as Carolina Biological, catalog #652732.
    • pH test kit, available from an online supplier such as Carolina Biological, catalog #652729.
  • For the plant growth experiment, you will need:
    • radish seeds, (or other suitable, fast-growing seeds),
    • small containers (peat pots or seedling trays),
    • potting soil, and
    • a measuring device for dispensing water, such as a 10 mL graduated cylinder, which is available from online suppliers such as Carolina Biological, catalog #721610.

Disclaimer: Science Buddies occasionally provides information (such as part numbers, supplier names, and supplier weblinks) to assist our users in locating specialty items for individual projects. The information is provided solely as a convenience to our users. We do our best to make sure that part numbers and descriptions are accurate when first listed. However, since part numbers do change as items are obsoleted or improved, please send us an email if you run across any parts that are no longer available. We also do our best to make sure that any listed supplier provides prompt, courteous service. Science Buddies does participate in affiliate programs with Amazon.com, Carolina Biological, Jameco Electronics, and AquaPhoenix Education. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity. If you have any comments (positive or negative) related to purchases you've made for science fair projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Remember Your Display Board Supplies

ArtSkills sparkle letters

Holographic Poster Letters

ArtSkills buy now button
ArtSkills vinyl letters

Vinyl Letters & Numbers

ArtSkills buy now button
ArtSkills supplies trifold

ArtSkills Trifold with Header

ArtSkills buy now button

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Experimental Procedure

  1. For the water hardness and pH tests, follow the instructions that come with the water test kit. When titrating samples, it is important to mix the solution well after each drop of test solution is added.
  2. For the plant growth portion of the experiment, it is important to keep all of the other growth conditions (sun exposure, soil, temperature, etc.) constant, and to vary only the source of water used for the plants. Be sure to use the same amount of water. Consult the Science Buddies resource, Measuring Plant Growth for methods you can use to quantify differences in growth.

Communicating Your Results: Start Planning Your Display Board

Create an award-winning display board with tips and design ideas from the experts at ArtSkills.
ArtSkills button poster gallery 350
ArtSkills button design tips 350
ArtSkills button for more tips 210 h

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.


  • Does rainwater chemistry in your area vary with weather patterns? Collect samples over several weeks or months, and test the water quality. Keep track of the weather systems that produced the precipitation. Were there variations in the ultimate source of the moisture? Can you correlate these variations with changes in rainwater chemistry?
  • If you live in an urban area, is rainwater chemistry affected by smog? Check the air quality reported in the newspaper for the days that samples were collected. Do you see differences in rainwater chemistry after days with high smog compared to days with cleaner air?
  • For the samples in your study, how does rainwater hardness compare with groundwater hardness? (See Figure 2 in the Introduction, above.) How does the acidity compare to the 1992 U.S. data? (See Figure 3 in the Introduction, above.)
  • Here is a related Science Buddies project you might want to check out:

Share your story with Science Buddies!

I did this project I Did This Project! Please log in and let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Related Links

If you like this project, you might enjoy exploring these related careers:

Picture of chemist


Everything in the environment, whether naturally occurring or of human design, is composed of chemicals. Chemists search for and use new knowledge about chemicals to develop new processes or products. Read more
Environmental Scientist evaluating toxin effects on frogs

Environmental Scientist

Have you ever noticed that for people with asthma it can sometimes be especially hard to breathe in the middle of a busy city? One reason for this is the exhaust from vehicles. Cars, buses, and motorcycles add pollution to our air, which affects our health. But can pollution impact more than our health? Cutting down trees, or deforestation, can contribute to erosion, which carries off valuable topsoil. But can erosion alter more than the condition of the soil? How does an oil spill harm fish and aquatic plants? How does a population of animals interact with its environment? These are questions that environmental scientists study and try to find answers to. They conduct research or perform investigations to identify and eliminate the sources of pollution or hazards that damage either the environment or human and animal health. Environmental scientists are the stewards of our environment and are committed to keeping it safe for future generations. Read more
Water conservationist

Soil and Water Conservationist

Soil and water are two of Earth's most important natural resources. Earth would not be able to sustain life without nutritive soil to grow food and clean water to drink. Soil and water conservationists foster the science and art of natural resource conservation. The scientists work to discover, develop, implement, and constantly improve ways to use land that sustains its productive capacity, and enhances the environment at the same time. Soil and water conservationists are involved in improving conservation policy by bringing science and professional judgment to bear in shaping local, state, and federal policy. Read more

News Feed on This Topic

, ,
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity