Jump to main content

Design Your Own Vibrobots

1
2
3
4
5
133 reviews
Log In

This feature requires that you be logged in as a Google Classroom teacher and that you have an active class in Google Classroom.

If you are a Google Classroom teacher, please log in now.

For additional information about using Science Buddies with Google Classroom, see our FAQ.

Abstract

Vibrobots are fun little robots built from common household supplies, that are powered by vibrating motors. In this engineering project, you will design and built your own vibrobot. Would you rather have a robot that skitters quickly across a table or one that spins wildly in circles? How about a sumo-wrestling bot that can push others out of its way? The choice is up to you!

Summary

Areas of Science
Difficulty
 
Time Required
Very Short (≤ 1 day)
Prerequisites
None
Material Availability
A kit is available for your convenience from our partner Home Science Tools.
Cost
Low ($20 - $50)
Safety
No issues
Credits
Ben Finio, PhD, Science Buddies

Recommended Project Supplies

Get the right supplies — selected and tested to work with this project.

View Kit

Objective

Use the engineering design process to design, build, and test your own vibrobot.

Introduction

Have you ever noticed that if you leave a cell phone sitting on a table in "vibrate" mode and it rings, it will move around (and maybe even fall off the table)? The cell phone has a tiny vibrating motor inside that makes it buzz. The same motors are used inside video game controllers to make them rumble. You can use these motors, along with tiny batteries, to make vibrobots, or tiny robots powered by vibrations (Figure 1).

Example images of vibrobots made from household materialsImage Credit: Ben Finio, Science Buddies / Science Buddies

Vibrobots can be made from a wide variety of materials such as pipe cleaners, paper, paperclips, toothpicks and bottle caps.


Figure 1. Examples of some different vibrobot designs.

Since they are powered by a single vibrating motor, vibrobots are not very easy to steer. They tend to bounce around randomly. However, how you design and build the robot's body can have a big impact on how it moves. You can build fast robots and slow robots, robots that go straight and robots that spin in place. A fast robot that goes in a straight line might be better for racing against other robots, but a heavy one that spins in circles might be better for "sumo wrestling" and pushing other robots out of the way. In this project you will use the engineering design process to decide what type of robot you want to build, then experiment with the design until you get the behavior you want.

If you are just building your robot for fun, you can move on to the procedure. If you are doing a science project, there are many physics and engineering concepts you can apply to building your robot. Here are a few terms you might find useful:

Terms and Concepts

Questions

Bibliography

Materials and Equipment Buy Kit

Recommended Project Supplies

Get the right supplies — selected and tested to work with this project.

View Kit

Disclaimer: Science Buddies participates in affiliate programs with Home Science Tools, Amazon.com, Carolina Biological, and Jameco Electronics. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity, and keep our resources free for everyone. Our top priority is student learning. If you have any comments (positive or negative) related to purchases you've made for science projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Experimental Procedure

Note: This engineering project is best described by the engineering design process, as opposed to the scientific method. You might want to ask your teacher whether it's acceptable to follow the engineering design process for your project before you begin. You can learn more about the engineering design process in the Science Buddies Engineering Design Process Guide.

Assembling Your Circuit

be gentle with wires warning. Be gentle with the motor wires. They are thin and can rip if you are not careful. You can apply a dab of hot glue at the base of the wires to reinforce them.

Before you design and build your vibrobot, you need to learn how to connect the motor and battery wires to create a circuit so electricity flows through the motor and causes it to vibrate. To connect them, twist together the exposed metal parts of the wires, as shown in Figure 2. The motor should start vibrating. Do not let the battery's red and black wires touch each other—this will create a short circuit and drain the battery very quickly.

The leads of a coin cell battery and a vibration motor are soldered together in a closed circuitImage Credit: Ben Finio, Science Buddies / Science Buddies
Figure 2. Motor (the gray circle on the left) and battery (the yellow circle on the right) wires connected to form a circuit.

You will need to attach the battery and motor to the body of your robot once it is built. The motor has a built-in sticky backing (peel off the protective paper first), but you will need to use tape or glue to attach the battery. For now, disconnect one set of wires to turn your motor off and save battery power.

Designing Your Robot

Remember that this section will follow the engineering design process, so there is not an exact step-by-step procedure for you to follow. In general, you will need to build a body for your robot using household and craft materials, and then attach the motor and battery. However, there is no single right way to build a vibrobot.

  1. Define your problem. What type of vibrobot do you want to build? Do you want to build a fast racing robot? Do you want to build a sumo wrestling robot? Do you want to build a robot that bounces off obstacles without getting stuck? What you decide to build is up to you!
  2. Do background research about vibrobots. The information in the background section should help you think about some of the design factors that will affect your robot's performance.
  3. Specify requirements for your robot. These requirements will depend on the type of robot you want to build and what you want it to do. For example, for a racing robot you could say, "The robot should be able to go straight over a distance of at least 30 centimeters."
  4. Brainstorm different designs for your robot. Look around your house for materials you could use. Figure 1 in the background section will give you some ideas for different designs, but use your imagination and come up with your own! What will you use for your robot's body? Will your robot have legs? How will you connect the motor and battery to the robot's body? Use your design notebook to sketch out different ideas before you start building anything.
  5. Build a prototype, or initial version, of the design you think will work best. It is OK if your design does not work out exactly like you thought it would. You might realize as you start to build that there is a problem with your design. The engineering design process is iterative, meaning sometimes you go back and do the steps more than once. Engineers rarely get things right on the first try!
  6. Test your robot! Connect both sets of wires to complete the circuit and make the motor vibrate. Then, put your robot down on a smooth surface and watch it go! Remember that your robot might not work like you want it to the first time. It might fall apart, it might fall over, it might not move at all! This is OK—now you can redesign and improve your robot.
  7. Does your robot meet the requirements you set in step 3? If not, keep going back through steps 4–6 until you have a robot that meets all your requirements. For example, maybe you wanted to build a racing robot that goes straight, but your robot always curves off to one side. You will need to figure out how to adjust your design to make it go straight. You might decide to make small changes to your existing design, or start again with a totally new design. Remember that the engineering design process is iterative, and you might go through the steps multiple times. If you need to present your project (see next step), it will help to use your lab notebook to document changes you make to your robot or take pictures of each new design.
  8. Communicate your results. Once you have a working robot, you are ready to present your project. If possible, bring your robot to demonstrate it in your classroom or at your science fair. You can also make a display board documenting your design process. Keep in mind that the display board for an engineering design project will be slightly different than one for a scientific method project. You can see a comparision of the engineering design process and the scientific method on this page.
icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Global Connections

The United Nations Sustainable Development Goals (UNSDGs) are a blueprint to achieve a better and more sustainable future for all.

This project explores topics key to Industry, Innovation and Infrastructure: Build resilient infrastructure, promote sustainable industrialization and foster innovation.

Variations

There are several other science projects and fun activities you can do with the parts in your Science Buddies Bristlebot Kit:

Careers

If you like this project, you might enjoy exploring these related careers:

Career Profile
Have you watched "The Transformers" cartoon series or seen the "Transformers" movies? Both shows are about how good and evil robots fight each other and the humans who get in the middle. Many TV shows and movies show robots and humans interacting with each other. While this is, at present, fantasy, in real life robots play a helpful role. Robots do jobs that can be dangerous for humans. For example, some robots defuse landmines in war-stricken countries; others work in harsh environments like… Read more
Career Profile
Mechanical engineers are part of your everyday life, designing the spoon you used to eat your breakfast, your breakfast's packaging, the flip-top cap on your toothpaste tube, the zipper on your jacket, the car, bike, or bus you took to school, the chair you sat in, the door handle you grasped and the hinges it opened on, and the ballpoint pen you used to take your test. Virtually every object that you see around you has passed through the hands of a mechanical engineer. Consequently, their… Read more
Career Profile
Just as a potter forms clay, or a steel worker molds molten steel, electrical and electronics engineers gather and shape electricity and use it to make products that transmit power or transmit information. Electrical and electronics engineers may specialize in one of the millions of products that make or use electricity, like cell phones, electric motors, microwaves, medical instruments, airline navigation system, or handheld games. Read more
Career Profile
Robots are no longer futuristic machines. Robots are here and now and are used in manufacturing, health care, service industries, and military applications. They perform tasks that are repetitive and hazardous—things that humans don't want to do or are unsafe to do. But robots are still machines, which means they require humans to build, maintain, program, and keep them functioning efficiently. Robotics technicians work with robotics engineers to build and test robots. They are… Read more

Contact Us

If you have purchased a kit for this project from Science Buddies, we are pleased to answer your questions.

In your email, please follow these instructions:
  1. What is your Science Buddies kit order number?
  2. Please describe how you need help as thoroughly as possible:

    Examples

    Good Question I'm trying to do Experimental Procedure step #5, "Scrape the insulation from the wire. . ." How do I know when I've scraped enough?
    Good Question I'm at Experimental Procedure step #7, "Move the magnet back and forth . . ." and the LED is not lighting up.
    Bad Question I don't understand the instructions. Help!
    Good Question I am purchasing my materials. Can I substitute a 1N34 diode for the 1N25 diode called for in the material list?
    Bad Question Can I use a different part?

Contact Us

News Feed on This Topic

 
, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Finio, Ben. "Design Your Own Vibrobots." Science Buddies, 6 Dec. 2023, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Robotics_p030/robotics/vibrobots?class=AQW9en3yIySWbBHqVuUS4vRgLVmszduNZgGwio_5diZ_NXuMoQCrT543wYbUKwNa5Mk0nVOCmYlDs7dop4nsc0gKJMr_NL7HSJNCaBlUcFRFrg. Accessed 20 Apr. 2024.

APA Style

Finio, B. (2023, December 6). Design Your Own Vibrobots. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Robotics_p030/robotics/vibrobots?class=AQW9en3yIySWbBHqVuUS4vRgLVmszduNZgGwio_5diZ_NXuMoQCrT543wYbUKwNa5Mk0nVOCmYlDs7dop4nsc0gKJMr_NL7HSJNCaBlUcFRFrg


Last edit date: 2023-12-06
Top
Free science fair projects.