Top athletes and coaches use a whole lot of science and engineering to improve performance and increase the chances of winning. Technologies like better tennis rackets, sleeker running and swimming outfits, and aerodynamic soccer balls, mean that current athletes are breaking world records left and right. Add to that better nutrition and science-based training regimes and you have an era of amazing athletes! Explore how science and engineering impact your favorite sport.

Select a resource
Filter by
Sort by
Science Fair Project Idea
Block off one-third of a soccer net with a cone, 5-gallon bucket or some other suitable object. Shoot into the smaller side from a set distance, but systematically varying the angle to the goal line. Take enough shots at each angle to get a reliable sample. How does success vary with angle? For a basic project: How do you think your success rate will vary with angle? Draw a conclusion from your experimental results. A bar graph showing success rate at different angles can help to… Read more
Science Fair Project Idea
Have you ever wondered why golf balls have a pattern of dimples on their surface? The dimples are important for determining how air flows around the ball when it is in flight. The dimple pattern, combined with the spin imparted to the ball when hit by the club, greatly influence the ball's flight path. For example, backspin generates lift, prolonging flight. When the ball is not hit squarely with the club, varying degrees of sidespin are imparted to the ball. A clockwise sidespin (viewed from… Read more
Science Fair Project Idea
How much difference does the spiraling motion of a well-thrown football make on the distance of the throw (compared to wobbling, or end-over-end motion of the ball)? Think of a way to reproducibly produce the desired ball motion and launch it with a constant force to find out. (For more information on the physics, see Gay, 2004.) Read more
Science Fair Project Idea
The rebound rating is the ratio of the height the ball bounces to, divided by the height the ball was dropped from. Use the rebound rating to measure the bounciness of new tennis balls vs. balls that have been used for 10, 20, 50, and 100 games. Another idea to explore: does it matter what type of court the ball is used on? (See: Goodstein, 1999, 63-64.) Read more
Science Fair Project Idea
Have you ever seen a skateboarder jump over an obstacle or slide down a railing? It looks like they are defying the laws of physics when they perform these tricks. It looks like it, but that's not the case. Physics describes the motion of objects and it is a skateboarder's best friend! All of these tricks can be explained by physics. In this sports science fair project, you will learn how speed affects "popping an ollie." The ollie is a basic skateboarding trick, and it's the first step to more… Read more
Science Fair Project Idea
"Ay Yaah!" echoes across the room while a loud "thud" signals a powerful kick striking the kick bag. Sound familiar? If the discipline, precision, and power of martial arts is your bag, try this project out for size. You won't be sparring with any opponent other than a swinging kick bag, but you'll learn a few powerful lessons about the physics of efficient kicking. No black belts required; just bring your best form and work up a little sweat while you use your feet to do fun science. Read more
Science Fair Project Idea
Watching professional racing-car drivers compete can be thrilling. The high speeds that racing cars can reach — up to 200 miles per hour (mph) and more! — put some unique demands on the vehicles. For example, to withstand high temperatures, the tires must be inflated with nitrogen gas, instead of air as with normal car tires. This enables the drivers to have better control over steering their cars as they race around the track. In this sports science project, you will inflate… Read more
Science Fair Project Idea
Skateboarder alert: Extreme performance needed in this project. Dude, you can cruise and carve while you investigate which skateboard wheels produce the fastest (and slowest) rides on your terrain in these experiments. You pick the wheels and design the tests you think will produce the most extreme results for speed and turns. Do this project and you can work on your ride and learn some science about the speed, spin, and design of skateboard wheels. Read more
Science Fair Project Idea
Do you like to watch the Olympics and see a new world record get set? Have you ever wondered how fast you'd need to go to achieve that world record? Well, in this sports science fair project, you'll find out how to compute speeds needed to achieve world records. Not only that, but you'll learn what speed is, and how to measure it in almost anything that moves! So head for the track, you're on a search for speed! Read more
Science Fair Project Idea
If you're an avid golfer, this might be a fun project for you. When you're setting up to tee off out on the course, how much attention do you pay to putting the tee in the ground? The height of the tee can affect both where in the swing the club makes contact and where on the clubface the ball makes contact. Are you placing your tees at the right height to get the most distance from your swing? Read more
< 1 2 3 4 5 >
Free science fair projects.