Jump to main content

Afterimages: The Colorful Tricks Eyes Play

1
2
3
4
5
38 reviews
Log In

This feature requires that you be logged in as a Google Classroom teacher and that you have an active class in Google Classroom.

If you are a Google Classroom teacher, please log in now.

For additional information about using Science Buddies with Google Classroom, see our FAQ.

Summary

Active Time
< 10 minutes
Total Project Time
< 10 minutes
Key Concepts
colors, eyes, vision, afterimages, illusions
Credits
Teisha Rowland, PhD, Science Buddies
Sabine De Brabandere, PhD, Science Buddies
A circle evenly divided into three colors blue, red and green

Introduction

Have you ever wondered how visual illusions are made? When we see special effects in movies, or a magic show, we often witness illusions that challenge our ability to correctly perceive things. One way in which our eyes play tricks on us is through afterimages. Afterimages are the images you see after staring at an object for several seconds and then looking away. In this science activity, you will look at afterimages to reveal the secrets of how your eyes see color.
This activity is not recommended for use as a science fair project. Good science fair projects have a stronger focus on controlling variables, taking accurate measurements, and analyzing data. To find a science fair project that is just right for you, browse our library of over 1,200 Science Fair Project Ideas or use the Topic Selection Wizard to get a personalized project recommendation.

Materials

  • Computer with a color monitor or a color printer and paper
  • Stopwatch or clock that shows seconds
  • Optional: Colored pencils and paper or a basic computer graphics program

Prep Work

  1. To do this activity, you will need to see the image below of the colored circle. Because of this you will need to have access to a computer with a color monitor to show the image, or you can print it out on a color printer.

Instructions

  1. If there are any lights right next to the computer monitor or the printout of this activity, turn the lights off.
  2. Look at the image of the colored circles (focusing on the small white spot in the center) for 30 seconds.

    Staring at the blue, green, and red pie chart and then the blank white space can trigger afterimages.
  3. After staring at the circle for 30 seconds, look at the white space to the right of it.
    Think about:
    What do you see? How are the colors in each part of the afterimage different from the parts of the original colored circle?
  4. Optional: You can use colored pencils and paper or a basic computer graphics program to draw your results.
  5. Thinking about the primary colors (red, blue, and green) and their secondary colors (yellow, purple/magenta and cyan), and how afterimages are caused, see if you can explain your results.
    Think about:
    Why do you think you see the afterimage colors that you do?

What Happened?

You should have seen an image that is similar in shape and size as the original image but different in color. The image you saw on the white surface is called an afterimage.

Afterimages occur because of the way we see color. Your eyes use three different groups of cells (specifically called cone cells) to see color and each group only sees red, green, or blue. To perceive white, all three groups of these cells—the red, the green, and the blue cells—need to respond. If you look at a red object, the red cells respond. If you stare at the object for some time and then quickly look at a white area, you will see an afterimage that is the same size and shape, but it has a cyan (blue-green) color. This happens because the red cells are worn out from being used, so they do not respond. You are temporarily left seeing with only your green and blue cells, and you see a blue-green color instead of white. The same process happened to your eyes in this activity, but it happened not only with the red cells but also with the blue and the green cells. The area where blue cells got worn out, you were temporarily left seeing only with the green and red cells. Because you perceive the mixture of red and green as yellow, the area that was blue in the original circle looked yellow in the afterimage. The green part of the original circle looked purple, or magenta in the afterimage because the green cells got worn out in this area and temporarily, only the red and blue cells responded. The mixing of red and blue light is perceived as purple, or magenta, so that part of the circle looked magenta in the afterimage.

The afterimage disappears after several seconds because the fatigued cone cells recover and become active again. With all the cone cells active, all three types of cells respond to the white surface, and you see the white region normally.

Two circles evenly divided into three colors one circle is blue, red and green while the other is yellow, cyan and violet

Digging Deeper

If the red cone cells in our eyes see red, the blue cone cells see blue, and the green cone cells see green, how is it that our eyes detect other colors like yellow or white? It turns out that all the other colors we see are a result of the different cone cell types responding together. For example, if you look at a yellow image (which is a mix of red and green) both the red and green cone cells respond. Your brain interprets this as yellow. The exact shade of yellow depends on the balance of red versus blue cone cells. To see white, all three types of cone cells must respond.

You may have frowned when reading that the primary colors are red, green and blue, and thought mixing red and green produced a dark brownish color, definitively not yellow. If so, you were probably remembering how you mix different colored pigments in paints, crayons or other art supplies. Light follows an "additive" color model, while pigments follow a "subtractive" color model. As shown in the figure, red, green, and blue light combines to make white light. Mixing two colors of light at a time produces yellow, magenta, or cyan colored light. That is very different from mixing colors of paint or ink.

A blue, a green, and a red beam of light partially overlapping. Where the three beams overlap, you see white; where blue and green overlap, you see cyan and where red and green overlap, you see the color yellow.

You can predict the color of the afterimage for most colors—it is the complementary color to the color of the object (using the additive color model). If the original image has the additive primary colors like the one in this activity, the mixture you see in each part of the afterimage is made up of the two primary colors that were not in that part of the original image. Mixing two of the three primary colors results in the following secondary colors: red and green gives yellow (which you should have seen in the top left part of the afterimage circle), red and blue gives purple, or magenta (which you should have seen in the bottom part of the afterimage circle), and green and blue gives cyan (which you should have seen in the top right part of the afterimage circle). Try to stare at a circle with yellow, cyan, and magenta and find that a circle with the primary colors appears as afterimage. Staring at yellow wears the red and green cone cells out, so when you switch to looking at white, only the blue cone cells respond. In a similar way, staring at cyan creates an afterimage that looks red, and staring at magenta creates an afterimage that looks green. Blue and yellow are complementary colors, so are cyan and red, and magenta and green. As the complimentary color is the color that when combined with the given color makes white, the afterimage when switching to looking at white will always show the complimentary color.

icon scientific method

Ask an Expert

Curious about the science? Post your question for our scientists.

For Further Exploration

  • Time how long it takes the afterimage to disappear. Then look at the colored circle for only five seconds and again time how long it takes that afterimage to disappear. Did it take more or less time the second time?
  • You could try repeating this activity but this time pay attention to how long it takes for the afterimage of each different color to disappear. Do some colors fade away faster?
  • Try doing this activity with several different people and have each person draw their results. Are they all the same, or are some different?
  • You could try this activity again but this time use objects or images that are different colors (colors other than the three primary additive ones, which were used in this activity). Can you accurately predict what the afterimages look like?
  • Can you predict what color the after image will be when looking at a cyan page after adapting to blue? What about adapting to green or red first? Never forget to test your hypotheses.

Project Ideas

Science Fair Project Idea
Yogi Berra said "You can observe a lot by just watching." In this human biology science fair project, you will observe how your eyes perceive color by watching afterimages. Afterimages are the images you see after staring at an object for several seconds and then looking away. You will also learn how different cone cells in your retina respond to different colors. Read more
Science Fair Project Idea
You know how to make new colors by mixing paint or crayons. For example, you get green by mixing yellow and blue, or orange by mixing red and yellow. With paint, blue, yellow, and red are primary colors, which you can use to make other colors. Have you ever tried making colors with light? Are the primary colors the same ones you use for paint? Do this experiment and find out. Read more
Science Fair Project Idea
Is that right side of your brain yearning to express its artistic side? This is a project that beautifully blends art with science. Learn about light and colorful shadows in these experiments where you mix and match various colors of light to create a mini light show and shadow wall. You might be surprised at the colorful hues you'll find lurking in the shadows. Read more

Links

Careers

Career Profile
Optometrists are the primary caretakers of our most important sense—vision. They diagnose and detect problems not only with vision, but with the health of the eye and the whole body. Based on their diagnoses, they prescribe glasses, contact lenses, and medications; refer patients to ophthalmologists for surgery; or develop treatment plans, like vision therapy, to help correct for deficits in depth perception. Their work helps people live better at every stage of life. Read more
Career Profile
Each time your heart beats, or you breathe, think, dream, smell, see, move, laugh, read, remember, write, or feel something, you are using your nervous system. The nervous system includes your brain, spinal cord, and a huge network of nerves that make electrical connections all over your body. Neurologists are the medical doctors who diagnose and treat problems with the nervous system. They work to restore health to an essential system in the body. Read more
Career Profile
Why people take certain actions can often feel like a mystery. Psychologists help solve these mysteries by investigating the physical, cognitive, emotional, or social aspects of human behavior and the human mind. Some psychologists also apply these findings in order to design better products or to help people change their behaviors. Read more
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.