Home Project Ideas Project Guide Ask An Expert Blog Careers Teachers Parents Students

Biochemical Engineer

Biochemical engineers with chemostat

A biochemical engineer could...


Work on a new kind of fertilizer that will improve a farmer's crop yield. carrot field Figure out how to grow large batches of mammalian cells for use in cancer-drug testing. cells in tissue culture
Design the manufacturing equipment needed to convert raw materials into everyday products. manufacturing line designed by biochemical engineer Discover a method for improving a well-known cold medicine. child making a face while taking medicine
Find out more...

Key Facts & Information

Overview A nice cool yogurt is the perfect snack. It comes in a variety of delicious flavors like peach, chocolate, and cherry and contains calcium, vitamins, and minerals that are good for you. Yogurt also contains live cultures that your body needs to maintain good health. How did all of those good things get into your yogurt? The answer is that a biochemical engineer helped to develop a recipe to make that yogurt a perfect snack for you. So many of the products that we use every day, from medicine and fertilizer to packaged foods, result from the hard work of a biochemical engineer. A biochemical engineer takes a recipe that has been formulated by a biologist or a chemist in the laboratory and develops it into a large-scale manufacturing process. Biochemical engineers design the manufacturing equipment that is required to convert raw materials into the products that you have at home, like cold tablets and packaged foods. If you are interested in applying your problem-solving skills to improving human lives, then you should definitely investigate this career.
Key Requirements Excellent problem-solving skills, ability to work well on teams, curiosity, good laboratory and mechanical skills
Minimum Degree Bachelor's degree
Subjects to Study in High School Physics, chemistry, biology, algebra, geometry, calculus
Median Salary
Biochemical Engineer
  $90,580
US Mean Annual Wage
  $45,230
Min Wage
  $15,080
$0
$10,000
$20,000
$30,000
$40,000
$50,000
$60,000
$70,000
$80,000
$90,000
$100,000
$110,000
Projected Job Growth (2010-2020) More Slowly than Average (3% to 6%) In Demand!
Interview
  • In this interview Raquel Widrig, an associate engineer with Genentech, discusses her career history and the projects she works on now.
  • In this video interview Victoria Boyle talks about the biochemical engineering curriculum at her college.
Related Occupations
Source: O*Net

Training, Other Qualifications

A bachelor's degree in biochemical or chemical engineering is required for almost all entry-level biochemical engineering jobs, but some basic research positions may require a graduate degree. Faculty positions require graduate degrees. Engineers offering their services directly to the public must be licensed. To keep current with rapidly changing technology, continuing education is important for biochemical engineers.

Beginning biochemical engineering graduates usually work under the supervision of experienced biochemical engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Biochemical engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians.

Education and Training

A bachelor's degree in biochemical or chemical engineering is required for all entry-level positions. Research and development jobs at industrial laboratories or with the government usually require graduate training, either a master's degree or a PhD. Faculty positions require a PhD. Many experienced engineers obtain graduate degrees in engineering or in business administration to learn new technology and to broaden their education.

Admissions requirements for entry into a biochemical or chemical engineering university program include a solid background in mathematics (algebra, geometry, trigonometry, calculus) and science (biology, chemistry, physics) with courses in English and humanities. Bachelor's degree programs are typically designed to last four years, but many students find that the program takes between four and five years to complete their studies.

Other Qualifications

Biochemical engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication skills are becoming increasingly important as biochemical engineers frequently interact with specialists in a wide range of fields outside engineering.

Nature of the Work

It is complicated but fun to develop a manufacturing process!
In this video
a process development engineer explains why his job is rewarding, exciting, and important to everyone.

Biochemical engineers act on teams with biologists and chemists to take laboratory processes and ramp them up into large-scale manufacturing. In fact, they are integral to a variety of manufacturing industries, such as food manufacturing and agro-technology. They design the equipment that is used to produce cell cultures of up to thousands of liters. Biochemical engineers grow cell cultures in order to develop natural fuels, improve the efficiency of drugs and pharmaceutical processes, and also develop cures for disease. They formulate the instructions the equipment uses to grow and maintain the cell cultures, and they create the operating specifications used by manufacturing personnel to keep the manufacturing floor running smoothly. Since biochemical engineers work directly on making large volumes of products for human use, they are concerned with manufacturing-plant safety and product safety.

Biochemical engineers design and conduct studies to determine the optimal conditions for cell growth, protein production, and virus expression and recovery using a variety of equipment such as centrifuges and bioreactors. The cell cultures produced in bioreactors can also be used for waste treatment. Biochemical engineers apply their engineering problem-solving skills to studying and learning more about the cell cultures they grow. The discoveries they make are often used to make manufacturing a repeatable and efficient process. Chemists and biologists also use this knowledge to improve their understanding of the molecular workings of the cell.

Biochemical engineers work in corporate laboratories and in research laboratories. This career has a wide focus and includes metabolic engineering, enzyme engineering, and tissue engineering.

  • Metabolic engineers use the tools of molecular genetics to optimize the production of specific metabolites and proteins.
  • Enzyme engineers use and design biocatalysts to produce chemicals and biochemicals.
  • Tissue engineers study all aspects of transplanting living cells to combat disease.

Work Environment

Most biochemical engineers work in office buildings, laboratories, or industrial manufacturing plants. Because many biochemical engineers work on the manufacturing floor, they may come in contact with hazardous chemicals and machinery.

Many biochemical engineers work a standard 40-hour week. At times, deadlines or design standards may bring extra pressure to a job, requiring engineers to work longer hours.

On the Job

  • Design or conduct follow-up experimentation, based on generated data, to meet established process objectives.
  • Design or conduct studies to determine optimal conditions for cell growth, protein production, or protein and virus expression and recovery, using chromatography, separation, and filtration equipment, such as centrifuges and bioreactors.
  • Design or direct bench or pilot production experiments to determine the scale of production methods that optimize product yield and minimize production costs.
  • Develop methodologies for transferring procedures or biological processes from laboratories to commercial-scale manufacturing production.
  • Devise scalable recovery, purification, or fermentation processes for producing proteins or other biological substances for human or animal therapeutic use, food production and processing, biofuels, or effluent treatment.
  • Recommend process formulas, instrumentation, or equipment specifications, based on results of bench and pilot experimentation.
  • Review existing manufacturing processes to identify opportunities for yield improvement or reduced process variation.
  • Advise manufacturing staff regarding problems with fermentation, filtration, or other production processes.
  • Collaborate with manufacturing or quality-assurance staff to prepare product specification and safety sheets, standard operating procedures, user manuals, or qualification and validation reports.
  • Confer with research and manufacturing personnel to ensure the compatibility of design and production.
  • Consult with chemists and biologists to develop or evaluate novel technologies.
  • Develop statistical models or simulations of biochemical production, using statistical or modeling software.
  • Direct experimental or developmental activities at contracted laboratories.
  • Lead studies to examine or recommend changes in process sequences and operation protocols.
  • Maintain databases of experiment characteristics and results.
  • Modify and control biological systems to replace, augment, or sustain chemical and mechanical processes.
  • Prepare piping and instrumentation diagrams or other schematics for proposed process improvements, using computer-aided design software.
  • Collaborate in the development or delivery of biochemical manufacturing training materials.
  • Communicate with regulatory authorities regarding licensing or compliance responsibilities, such as good manufacturing practices.
  • Communicate with suppliers regarding the design and specifications of production equipment, instrumentation, or materials.
  • Participate in equipment or process validation activities.
  • Prepare project plans for equipment or facility improvements, including time lines, budgetary estimates, or capital spending requests.
  • Prepare technical reports, data summary documents, or research articles for scientific publication, regulatory submissions, or patent applications.
  • Read current scientific and trade literature to stay abreast of scientific, industrial, or technological advances.

Companies That Hire Biochemical Engineers

Ask Questions

Do you have a specific question about a career as a Biochemical Engineer that isn't answered on this page? Post your question on the Science Buddies Ask an Expert Forum.

Sources

Additional Support

We'd like to acknowledge the additional support of:

  • Abbott Fund
  • Bio-Rad
  • MedImmune