Jump to main content

How to Be Successful at a Top Science Competition

by Amber Hess

Some of the key ingredients for success at the highest levels of high school science competition are:

  1. Knowing that you need a mentor (most students don't believe that they do) and having the initiative and persistence to seek one out. Mentors can be very useful because they can give you advice if you are stuck, help you present your research like a scientist, and write recommendations. Essentially all of the 2005 Intel Science Talent Search (now Regeneron Science Talent Search) Finalists had a mentor, although in a few cases that person was a relative. In fact, Craig Barrett, Intel's chief executive, said "The generic combination (among Science Talent Search winners) is that they're smart, they typically have parents who are very involved, and they have a mentor of some type."

    The role of the mentor is often fairly subtle (and that characterization is not meant to imply that it is unimportant—it is). In my case, one of the most important things my mentor did was show me how to organize my research so that it would leave a favorable impression on other chemists (specifically, analytical chemists working in the world of qualitative and quantitative analysis, thus my research should be organized in the same way). Later, she gave lots of feedback about presenting the data. Simply put, I would not have had the success I did without her help.

  2. You must produce an original contribution—new knowledge. In other words, you must do creative, real science; do not just repeat work that has been verified many times in the past.

  3. Some students also work at a research institution with their mentor. If you have the opportunity, I suggest taking it; however, not having access to professional lab facilities does not ruin your chance of winning in the slightest—I used my kitchen and the surrounding rooms for all of my projects, and I made use of materials my school owned. For the 2005 Science Talent Search, about two-thirds of the participants did work with the advantage of a research lab; about one-third of the projects were either in the area of math or they were kitchen tabletop experiments, like mine.

  4. Prepare to invest a lot of time, but know that it's worth it! For the top competitions especially, a lot of time is put into the projects. The amount of hours spent varies widely. I worked almost the entire summer on my project, and overall, I invested about 800 hours over two years, which is about 8 hours/week, though I did put more time in over the summers and sometimes less during the school year. Many students enter competitions with projects that are based on work from a summer institute (such as the six-week Research Science Institute at MIT or Caltech) and/or a high school research class. After talking with some of my Intel ISEF and Science Talent Search friends, I found that they spent a range of 400–1600 hours on their projects (for the higher numbers, the work was completed over a multiple-year period).

Finding a Mentor

Obtaining a mentor is so important to success in the top fairs, I wrote a separate document about it:  How to Find a Mentor.

Choosing a Topic

Study Important Theories

Organize Yourself

Completing the Experiment

Analyzing the Results

A picture of Amber Hess
Amber Hess was a Mentor in the Science Buddies Online Mentoring Program for three years. A passionate science student, she has won awards at many prestigious science competitions. In 2005 she was an Intel Science Talent Search Finalist (one of only 40 students in the entire country), a semi-finalist for the Siemens Westinghouse competition, and she won a First Place Grand Award in Chemistry at the Intel International Science and Engineering Fair (ISEF), which she also attended in 2003. She has qualified to compete at the California State Science Fair five times, winning 4th, 3rd, and two 1st place awards. Amber graduated from MIT in 2009 with a BS in Chemical Engineering.
Free science fair projects.