Jump to main content

Make A Candy DNA Model

63 reviews


Active Time
45 minutes to 1 hour
Total Project Time
45 minutes to 1 hour
Key Concepts
DNA, double helix, candy
Svenja Lohner, PhD, Science Buddies
Sabine De Brabandere, PhD, Science Buddies
Make A Candy DNA Model!


Ever wondered how DNA, the genetic blueprint of a life-form, can encode and pass on the information on how to grow and maintain that life-form? Just like a cookbook contains a complete recipe for a dish, DNA stores the recipe for the life of an organism. Although each human has a unique DNA sequence, the DNA in all of us is about 99.9% identical! In this activity, you will use pieces of candy to make a model for a short section of DNA—enough to get a sense of what DNA is like and how it encodes life.

This activity is not recommended for use as a science fair project. Good science fair projects have a stronger focus on controlling variables, taking accurate measurements, and analyzing data. To find a science fair project that is just right for you, browse our library of over 1,200 Science Fair Project Ideas or use the Topic Selection Wizard to get a personalized project recommendation.


  • Soft candy that comes in four different colors such as gummy bears, gum drops, or mini marshmallows (10 of each color)
  • Twizzlers (2) (or similar rope-like candy)
  • Toothpicks (5)
  • Paper
  • Pen (or marker)
  • Paper towel
  • Video instructions are available in English and Spanish

    Materials for Candy DNA activity

Prep Work

  1. Clean the area you will work on, or plan to work with your candies on top of a paper towel.
  2. Sort your candies by color. Make sure you have at least 10 pieces of each of the 4 colors you will be using.


  1. DNA encodes the genetic blueprint of a life form using four chemicals. It is a long molecule that looks a little like a rope ladder, only about 200,000,000 times smaller! Give the long "ladder" a clockwise twist, and you can see why DNA is also called the "double helix." Following the instructions below, you will make a candy model of a piece of DNA. This will help you see what DNA looks like!
  2. DNA uses four chemicals (adenine, guanine, thymine and cytosine) to encode the data to maintain and grow an organism. These chemicals are abbreviated by the letters A, T, C, and G. We will use different colors of candy to represent each of these chemicals: yellow (A), red (T), green (G), and clear (G). You might use different colors. That's okay! Just be sure that you keep track of which color you are using to represent each chemical. (Tip! Take a piece of paper and label each of your piles with the letter of the chemical it represents.)
  3. These code chemicals are very particular. They always pair up in specific ways: A pairs with T, and C pairs with G. In your model, red only combines with yellow, and clear only combines with green. Use toothpicks to make colored pairs from your candies by sticking a candy on each end of the toothpick. Push the candies onto the toothpick so that the candies are pressed together in the middle, and you still have a bit of toothpick sticking out on each side, as shown below. You will create 6 pairs each of yellow-red and green-clear. No other combinations of colors are allowed. Note that in your body, these pairs are tiny and not colorful! Your candy model makes them look large and colorful. That makes the model easier to understand. Your DNA has a length of about 3 billion pairs, so your candy DNA will only model a small piece of DNA—not the whole sequence!

    Two pieces of candy on a single toothpick. These represent a DNA base pair.
  4. DNA looks like a twisted rope ladder. In your model, you will use Twizzlers for the "backbone" sides of the ladder and then add the candy "pair" rungs. To assemble your DNA model, lay two Twizzlers parallel to one another with about 8 cm of space in between.
  5. You will link the pairs of code chemicals to your DNA backbones by attaching each pair to the backbones so that the pair look like ladder rungs. Lay your pairs between the backbones, as shown below. (The order and orientation you choose, or the sequence is up to you.)

    Candy DNA model parts laid out but not yet connected -- licorize backbones and base pairs made from candies connected by toothpicks
  6. Take one toothpick that has a GC or AT pair of candies on it and stick the toothpick into the inside of one piece of the backbone (near the top). Then carefully stick the other end of the toothpick into the other side of the backbone so that your candy pair is connected to both sides.
  7. Continue to attach your other candy pairs to the backbones so they make parallel rungs. Leave about one or two centimeter of space between each rung. Do this until your backbones are connected by pairs from one end to the other.

    Candy DNA base pairs being connected to the licorice backbones by toothpicks
  8. Your candy DNA model probably looks something like the one below. Your sequence of pairs might be in a different order than this. That is okay! Lay your model on a piece of paper, and use a pen or marker to write the letters next to each piece of candy.

    Candy DNA model on a piece of paper with the letters of the DNA chemicals written next to each piece of candy
  9. Your model is almost finished! One detail is missing: DNA is twisted. Hold one end of your model flat and carefully flip the other end over (180 degrees). This should create a twist!
    Think about:
    What happens to the length of your DNA piece when you twist it? Do you see why DNA is called a double helix?

    Candy DNA model twisted to form double helix
  10. DNA can duplicate itself using the information contained in either strand, and you can too. To test, untwist your DNA model and lay it flat on a table or the ground. Hide one strand (a backbone with one side of each pair) with paper or a blanket. Your job is to use the knowledge you gained while making the DNA model to complete the section.
    Think about:
    For each visible color (code chemical), can you tell which color (code chemical) is hidden? (Hint: look back at the second step of the procedure for help.) How could this help you duplicate your DNA molecule?
  11. To get an idea of how long human DNA is, count the number of pairs in your DNA section. Human DNA consists of three billion pairs.
    Think about:
    Can you estimate how long your model would be if you modeled all the three billion pairs?
  12. Take your ruler and measure how wide your DNA molecule is when untwisted. A real DNA molecule is about two nanometers or two millionths of a millimeter (2÷1,000,000 mm) wide.
    Think about:
    How many times wider is your model than a real DNA molecule?

What Happened?

You were most likely able to tell what the hidden colors were, no matter which strand you chose to hide. This is because once you know one side of a pair, you know its partner as these chemicals always pair with the same partner: red with yellow; green with clear.

You probably have about 6 pairs in your model. You would need to make it 500,000,000 times longer to model all three billion pairs of human DNA. Your model would be about 60,000 km (37,000 miles) long, which is about 1.5 times around the world!

Your DNA molecule is probably about 8 cm wide. Real DNA is about 2 nanometers or 2 millionths of a millimeter wide. This means your model is about 40 million times wider than real DNA.

This long string of DNA is coiled and folded into the center of almost every cell of the human body!

Digging Deeper

Plants, fungi, and humans might seem very different from each other, but they are all made up of tiny building blocks called cells, and—with very few exceptions—each of these cells has in its center a molecule containing the blueprint of the organism. This molecule is called DNA: deoxyribonucleic acid. Although the blueprint is different—after all, plants, fungi, and humans are very different organisms—the way it is encoded in DNA is identical.

The DNA molecule encodes all information using four chemicals: Cytosine [C], Guanine [G], Adenine [A], and Thymine [T]. It has two complementary strands, each with a long sugar-phosphate backbone to which the four chemicals attach. The sequence or order of these chemicals contains the data to maintain and grow the organism. In DNA, these four chemicals always link together to form pairs: A pairs with T and C pairs with G. In this very specific way, the two complementary strands link together to form DNA: a long molecule that looks a little like a rope ladder, only about 200,000,000 times smaller and twisted.

When organisms grow, their cells divide and in almost all cases, each cell receives a duplicate of the DNA molecule. DNA's ingenious structure allows for easy replication: each strand of the double helix contains all the information needed to create a new DNA molecule. If the pairs let go of each other, each backbone with its sequence of four chemicals can be the basis of a new DNA molecule. As A and T always pair up and C and G also always go together, one strand is enough to recreate the molecule.

DNA model made from candy for science activity
icon scientific method

Ask an Expert

Curious about the science? Post your question for our scientists.

For Further Exploration

  • This model is made from candies. Can you create a model from paper and tape?
  • Take a piece of rope about one meter long. Twist the rope and keep on twisting. Do you see how a long string can twist and fold into a much more compact space? In a similar way, the DNA molecule twists and folds into a more compact entity.

Project Ideas

Science Fair Project Idea
In this project, you'll learn how to isolate DNA from onion cells, separating it from other cellular components in a manner that still preserves its structure and sequence. In the end, you'll have enough DNA to see with the unaided eye, and you'll be able to spool it to demonstrate its strand-like structure. Read more


STEM Activity
50 reviews
Have you ever wondered how scientists get a sample of DNA from a plant, animal, or other organism? All living organisms have DNA. DNA, which is short for deoxyribonucleic acid, is the blueprint for almost everything that happens inside the cells of an organism — overall, it tells the organism how to develop and function. DNA is so important that it can be found in nearly every cell of a living organism. In this activity, you will make your own DNA extraction kit from household… Read more
STEM Activity
26 reviews
Ever wondered how DNA, the genetic blueprint of a life-form, can encode and pass on the information on how to grow and maintain that life-form? Just like a cookbook contains a complete recipe for a dish, DNA stores the recipe for the life of an organism. Although each human has a unique DNA sequence, the DNA in all of us is about 99.9% identical! In this activity, you will make a model for a short section of DNA—enough to get a sense of what DNA is like and how it encodes life. Read more



Career Profile
Growing, aging, digesting—all of these are examples of chemical processes performed by living organisms. Biochemists study how these types of chemical actions happen in cells and tissues, and monitor what effects new substances, like food additives and medicines, have on living organisms. Read more
Career Profile
I have black hair, you have blonde hair. I have blue eyes, you have brown eyes. These, and other characteristics, describe what we look like, how tall we are, and even what our personality is, and they are all controlled by our chromosomes. Chromosomes are packages within each of our cells that hold our genes. Our chromosomes also determine if we might inherit any genetic diseases or if birth defects are present. Extracting, testing, and examining the chromosomes from cells is the job of the… Read more
Free science fair projects.