Jump to main content

Holes That Do Not Leak!

19 reviews


Active Time
10-20 minutes
Total Project Time
10-20 minutes
Key Concepts
Air pressure, water pressure, surface tension
Sabine De Brabandere, PhD, Science Buddies


Did you know that at sea level there are about 15 pounds of air pressing on each square inch of your body? This air is very helpful in our daily lives. For example, this layer of air helps to keep the Earth from getting inhospitably cold or hot. It can even help keep a bottle with holes in it leak-free! Try the activity to find out how.

This activity is not recommended for use as a science fair project. Good science fair projects have a stronger focus on controlling variables, taking accurate measurements, and analyzing data. To find a science fair project that is just right for you, browse our library of over 1,200 Science Fair Project Ideas or use the Topic Selection Wizard to get a personalized project recommendation.


  • Sturdy plastic bottle with tight-fitting lid, 750 milliliters to 2 liters works well
  • Water, enough to fill the bottle
  • At least four pushpins
  • Work area that can get wet
  • Baking sheet with a rim
  • Sink
  • Towel or cloth for cleanup
  • Optional: food coloring
  • Optional: More sturdy plastic bottles
  • Optional: More water

    Materials needed to do a science activity that explores when holes do and do not leak.

Prep Work

  1. Fill the bottle with water, add a drop of food coloring (optional), and close the lid tightly.
  2. Place the bottle on the baking sheet. The sheet will catch any water that might flow out.


  1. Push at least four pushpins into the body of the bottle, about one inch from its bottom.
    Think about:
    Does water leak out? Why do you think this is so? What do you think will happen if you pull the pins out?

    A hand gently holding the bottle while another hand pushes a pin in body of the bottle.
  2. Carefully pull the first pin straight out so you leave a small round hole in the bottle.
    Think about:
    Do you see a stream of water flowing out or just a trickle? Why do you think that is so? What do you think will happen when you pull the other pins out?

    A hand gently holding the bottle while another hand pulls a pin out of the bottle.
  3. Carefully pull the other pins out of the bottle. Try not to press on the bottle while you pull the pins out.
    Think about:
    What happens? Is this what you expected? Why do you think this happens?
  4. Squeeze the bottle and release it. Repeat this a few times.
    Think about:
    What happens when you squeeze on the bottle? What happens when you release it? Why do you think this would happen?

    A hand squeezing a bottle with holes. Water flows out of the holes.
  5. Carefully move the bottle to a sink. Hold a towel underneath to catch any drips. Hold the bottle over the sink and open it.
    Think about:
    What happens? Why would this happen? Can you find a way to stop the streams of water?

    A collection of two pictures showing that water streams out of the holes when the bottle is open not when the bottle is closed.

What Happened?

It is likely that only a trickle dripped from the holes when the bottle remained closed and no pressure was applied—and that streams poured out when the bottle was opened or pushed in.

Water likes to stick together, so it takes effort to separate a stream of water from a body of water. Unless you press the bottle—or unless the air in the atmosphere pushes on the top surface of the water—no streams will flow out from tiny holes.

Air outside the bottle also presses against the water near the holes. If there is a place for air to flow in (such as an opening at the top of the bottle), the entering air could allow water to drip out of the holes. But in an airtight bottle no air can enter to fill the space of any water that dripped out. So if any bit of water leaves the bottle, it reduces the air pressure inside the bottle, keeping the water from pouring out. If you squeeze the bottle, however, you increase the air pressure, and water can squirt out.

If the holes are small enough, the water sticks together just enough to stop air from bubbling in. If you tried making larger holes, you probably noticed that air bubbles manage to creep in as water flowed out of them. If you made a small hole near the spout of the bottle as explained in the further exploration section, you undoubtedly noticed that even a tiny hole can allow enough airflow in to get the water flowing.

Digging Deeper

Earth is covered by the atmosphere, which is a blanket of gas that is 60 miles thick. Although we usually think of air as not being full of anything, all air is made up of tiny particles, which have a small amount of mass. We—and anything else around us—experience the weight of this layer of gas as pressure; this is called atmospheric pressure. We are so used to this pressure, however, that we rarely notice its existence. But if you have ever felt your ears "pop" while driving up a mountain, you noticed it changing. As you drive up in elevation, fewer layers of air press on you. The air inside your eardrums remained at the air pressure from a lower elevation—at least, until they "popped."

Water is also made up of tiny particles that have mass. When something is underwater, it feels the pressure of all the layers of water above it. Because water is much denser than air it is also much heavier. A layer of about 10 meters of water creates approximately the same pressure as the 60-mile-thick layer of air surrounding the earth. You might have felt water pressure while diving in a deep pool; the deeper you dive, the more you feel the water press against your eardrums.

Water has another interesting quality: its particles like to stay together. It is as if there is a thin film around a body of water. Scientists call this surface tension. You can see surface tension at work when looking closely at water droplets on a solid surface; they tend to clump together in round dots or small puddles rather than spreading out completely flat and evenly.

Air pressure and surface tension work together in this activity to prevent small holes from leaking.

icon scientific method

Ask an Expert

Curious about the science? Post your question for our scientists.

For Further Exploration

  • In another bottle make holes at different heights in the body of the bottle. All of the holes should be well below the waterline. Do you think that making holes at different heights will alter the results?
  • Try again but make your last hole near the bottle's spout so air can flow in and out of the bottle. How does this small hole change the outcome? Why do you think that is?
  • This activity asks to make small round holes in the bottle. Try repeating the activity with larger holes or irregularly shaped holes and see if the results change. Why would the size or shape of the hole matter?

Project Ideas

Science Fair Project Idea
Have you ever ridden on a hovercraft? It is like gliding on a cushion of air! In this science project, you will make your own mini hovercraft using a CD or DVD and a balloon and investigate how the amount of air in the balloon affects how long the hovercraft hovers. Read more
Science Fair Project Idea
3... 2... 1... 0— blastoff! In this science project, you will use a bottle rocket launcher to launch your own bottle rocket. You will load it with water and pressurized air, make several launches, and find out what makes your rocket soar the highest. Read more


STEM Activity
20 reviews
Have you ever seen a water strider (also called water bugs, pond skaters, water skippers etc.)? They are bugs that effortlessly hop around on the surface of ponds, lakes, and rivers. How do they do it without sinking? Try this project to find out! Read more
STEM Activity
11 reviews
Have you ever used a crazy straw? Some spiral their way up. Others have fancy colors or decorations. Some are thin and others are wide. But just about all of them leave you sipping your drink from about the same distance. Why? Wouldn't it be fun to poke your head out of an upstairs window and secretly take a sip from a drink way below? Would it even be possible? With this activity, you'll see if you can set your own record for the longest working straw! Read more



Career Profile
Physicists have a big goal in mind—to understand the nature of the entire universe and everything in it! To reach that goal, they observe and measure natural events seen on Earth and in the universe, and then develop theories, using mathematics, to explain why those phenomena occur. Physicists take on the challenge of explaining events that happen on the grandest scale imaginable to those that happen at the level of the smallest atomic particles. Their theories are then applied to… Read more
Career Profile
Our universe is full of matter and energy, and how that matter and energy moves and interacts in space and time is the subject of physics. Physics teachers spend their days showing and explaining the marvels of physics, which underlies all the other science subjects, including biology, chemistry, Earth and space science. Their work serves to develop the next generation of scientists and engineers, including all healthcare professionals. They also help all students better understand their… Read more
Free science fair projects.