Serve Illuminated Water
![]() IntroductionLight is fascinating! It can look like a wave or a particle; it can be red, blue or any color of the rainbow; you can even mix all the colors together to get white! It travels in straight lines and still appears to bend around objects. It can travel through air, but it does not need the air. Unlike sound, light can travel from distant stars through a vacuum and reach us years later, or it can be sent through fiber optic cables and go around the world in less than a second! Does that sound impressive? How about pouring light from a bottle into a glass or sink? Does this sound too far-fetched to you? Try the activity and make it happen!
This activity is not appropriate for use as a science fair project. Good science fair projects have a stronger focus on controlling variables, taking accurate measurements, and analyzing data. To find a science fair project that is just right for you, browse our library of over 1,200 Science Fair Project Ideas or use the Topic Selection Wizard to get a personalized project recommendation.
BackgroundHave you ever noticed how you need to point a flashlight toward an object illuminate the object? That shows that light travels in straight lines. But, what if we introduce a mirror, or shine a light beam into water? Light bouncing off a shiny surface (in other words, reflected by the surface) or light bent when entering a medium (meaning refracted on the surface) introduces kinks into these straight lines. Several activities listed in the “Explore More” section can help you understand these phenomena better. Materials
Preparation
Procedure
Extra: If you have a laser pointer available, repeat the activity with the laser pointer. Be careful though; never look into the light produced by a laser or let the light bounce back from a reflective material into your eyes! Before you repeat the activity with your laser pointer, explore the differences between the light produced by a laser and the light produced by your flashlight. How are they different; how are they similar? How could these differences influence what you observed in this activity? Did the activity confirm or refute your predictions? Extra Optical fibers are flexible strands of glass. They are used to transport pulses of laser light (carrying information) over long distances. The light does not smoothly bend with the cable, but hits the wall of these fibers frequently. Each time the light hits the wall, it gets reflected back into the fiber. As long as you do not bend the fiber sharply, the laser light stays trapped in the cable all the way until the end of the cable. Can you detect similarities between the activity and optical fiber cables? Could you find ways to transmit information in your water beam, and if so, how? Observations and ResultsDid you notice how, at first, the light illuminated the spot on the ceiling or the wall where the bottle was pointing to? Were you surprised to see how the light followed the beam of water when you poured the water? This is what is expected. Initially, when you are holding the water bottle up, light emitted by the flashlight hits the water surface nearly perpendicular. In this case, light can easily move through the water-air surface and travel straight on to illuminate a spot on the ceiling or wall. Conditions change when you tilt the bottle and pour water out. Now, light hits the water surface at a small angle. In this case, the water-air surface reflects the light back into the water like a mirror would do. The reflected light travels on and encounters the water boundary again, at a different spot, but again at a small angle and again, it is reflected back. Time after time, the light gets reflected at the edge of the water beam. It is trapped inside the water beam and follows the path of the water, only to be released when the water hits the sink or tub. There, light is reflected in all directions. You observe a brightly illuminated spot. Light travels through optical cables in a similar way, continuously bouncing off the edges of the cable as it makes it way to the end of the cable, where it can release its information. More to Explore
If you like this activity, you might enjoy exploring these related careers:
Log in to add favorite
More Menu
Career Profile
In the first dozen years of the 21st century, the Digital Age, you can send and receive email from around the world in the span of a few minutes. Surgeons routinely perform laser surgery that results in less bleeding and faster healing time. Our Air Force defends our skies using electronics-based aircraft that can almost fly itself! What is one of the connections among these advances? Photonics technology! Photonics is the science of using light and electronic devices to create tools that…
Log in to add favorite
More Menu
Career Profile
Do you enjoy watching cable television, texting on your phone, and surfing the Internet? Do you know anyone who has had eye surgery and been back to normal the next day? Many of the advances in telecommunications and medicine are due to laser and fiber-optic technology. This technology has led to devices that provide faster and richer communication, advanced surgeries, and faster healing times, as well as amazing robotics for manufacturing. But, as with all equipment, someone has to install and…
CreditsSabine De Brabandere, PhD, Science Buddies
ReviewsReviews |
Key Concepts
Light, total internal reflection
|
Explore Our Science Videos
Toy Sailboat with Keel
|
4 Easy Robot Science Projects for Kids
|
DIY Toy Sailboat
|