Jump to main content

Ball Launcher Challenge

1
2
3
4
5
1 review

Summary

Grade Range
6th-8th
Group Size
2-4 students
Active Time
2 hours
Total Time
2 hours
Area of Science
Mechanical Engineering
Engineering Challenge
Key Concepts
Engineering design
Credits
Ben Finio, PhD, Science Buddies

This engineering challenge is based on an internal competition designed by employees at Fluor Corporation.

Ball Launcher: 2018 Engineering Challenge

Overview

Add a twist to a traditional "build a catapult" engineering project with this fun lesson plan based on the 2018 Engineering Challenge. Your students must build a device to launch a ball as far as possible—but they also have to build another device to catch it! With detailed rules and guidelines for a class-wide competition, this lesson is a great way to teach your students about the engineering design process.

Learning Objectives

NGSS Alignment

This lesson helps students prepare for these Next Generation Science Standards Performance Expectations:
This lesson focuses on these aspects of NGSS Three Dimensional Learning:

Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Science & Engineering Practices Engaging in Argument from Evidence. Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
Disciplinary Core Ideas ETS1.B: Developing Possible Solutions. A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.

There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.

ETS1.C: Optimizing the Design Solution. The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
Crosscutting Concepts Structure and Function. Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.

Materials

Tape, plastic cups, a ruler, rubber bands, paperclips, pencils, a sheet of cardboard and a ball of aluminum foil

Each group will need the following materials:

Background Information for Teachers

This section contains a quick review for teachers of the science and concepts covered in this lesson.

In this lesson, your students will use readily available craft/office supplies to build a device that can launch a ball and a receiver to catch it (Figure 1). Detailed rules and scoring guidelines are provided so you can hold a class-wide competition and compare your class's scores to those submitted by other students around the world during the 2018 Engineering Challenge.

Four images of homemade catapults and receivers

Two catapults are made from pencils, plastic cups, tape and a ruler and are pictured on the left of the image. Two receivers are made from paper, a plastic cup, tape and pencils pictured on the right.


Figure 1. Different designs for launching (left) and receiving (right) devices.

This challenge gives you the opportunity to explore some interesting topics in physics and engineering. Rather than explaining each topic in detail, this background section will give you a brief overview of each one, and you can decide which, if any, to address with your students. Explanations of each topic can be found in the Additional Background Links section.

  • Simple machines: use the project to learn about simple machines like the lever and inclined plane. How can simple machines be combined to form a more complex machine that can launch a ball?
  • Projectile motion is a classic topic in physics classes. How do the initial and launch angle of the ball affect its range?
  • Energy is another classic physics topic. The ball needs kinetic energy, the energy of motion, to fly through the air. Where will that energy come from? It could come from elastic potential energy, the energy stored in a stretched material, like a rubber band. It could come from gravitational potential energy, the energy stored in an object that is raised up off the ground. Or, the energy could come from work that you do with your hand by exerting a force.
  • Engineering design: you can also use this project to walk your students through the engineering design process. They probably will not build a perfect machine on their first try. Instead, they will need to iteratively test and redesign their launcher/receiver in order to improve the design.

Prep Work (15 minutes)

Engage (5 minutes)

Explore (90 minutes)

Reflect (30 minutes)

Assess

Make Career Connections

Lesson Plan Variations

Top
Free science fair projects.