Grade Range
4th-8th
Group Size
3-4 students
Active Time
6 hours
Total Time
6 hours
Area of Science
Mechanical Engineering
Key Concepts
Water resources, engineering design
Learning Objectives
  • Use the engineering design process to design, build, and test a prototype device to lift water.
  • Develop a business plan for how the device could be used in the real world.

Overview

What would your students do if your town's water supply was cut off due to an equipment failure or natural disaster? Inspired by Global Problem Solvers: The Series, in this lesson plan they will tackle a real-world engineering challenge by building a prototype of a device that can manually pump water during an emergency. They will also think like entrepreneurs and come up with a business plan for how their device could be produced, sold, and used in the real world.

This lesson is one of three independent lesson plans inspired by Global Problem Solvers: The Series. You can read more about the series and the lesson plans available from Science Buddies here.

NGSS Alignment

This lesson helps students prepare for these Next Generation Science Standards Performance Expectations:
  • 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
  • 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
  • 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
  • MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
  • MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
This lesson focuses on these aspects of NGSS Three Dimensional Learning:

Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
3rd–5th grade
Asking Questions and Defining Problems. Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.

Constructing Explanations and Designing Solutions. Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem.

Planning and Carrying Out Investigations. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.


6th–8th grade
Asking Questions and Defining Problems. Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Engaging in Argument from Evidence. Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

Developing and Using Models. Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.
3rd–5th grade
ETS1.A: Defining and Delimiting Engineering Problems. Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

ETS1.B: Developing Possible Solutions. Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions.

Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.

ETS1.C: Optimizing the Design Solution. Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.


6th–8th grade
ETS1.A: Defining and Delimiting Engineering Problems. The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.

ETS1.B: Developing Possible Solutions. A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.

ETS1.C: Optimizing the Design Solution. The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
3rd–5th grade
Influence of Science, Engineering, and Technology on Society and the Natural World.
Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.


6th–8th grade
Influence of Science, Engineering, and Technology on Society and the Natural World.
The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Credits

Ben Finio, PhD, Science Buddies
Developed in partnership with Global Problem Solvers: The Series   sponsor logo Cisco Global Problem Solvers

Materials


Suggested materials to build the water lifting machine.

Since this is an engineering design project, there is not a specific list of required materials. You can provide your students with an assortment of materials and/or let them gather materials from home. Here are some suggestions:

  • Waterproof materials for moving water: plastic cups/bottles/plates, plastic or rubber tubing, aluminum foil, etc.
  • Plastic bins or food storage containers for storing water
  • Other construction materials (not necessarily waterproof): corrugated cardboard, cardboard tubes, PVC pipe, wooden skewers or craft sticks, duct tape, glue, etc.
  • Towels to clean up spilled water
  • Measuring cups
  • Optional: food coloring (makes water easier to see)
  • Internet/library access for your students (at school and/or at home)

Reviews

|
Science Buddies |
Was this review helpful?
Be the first one to review this lesson plan.
Grade Range
4th-8th
Group Size
3-4 students
Active Time
6 hours
Total Time
6 hours
Area of Science
Mechanical Engineering
Key Concepts
Water resources, engineering design
Learning Objectives
  • Use the engineering design process to design, build, and test a prototype device to lift water.
  • Develop a business plan for how the device could be used in the real world.