Science Projects Project Guides Ask An Expert Blog Science Careers Teachers Parents Students
Support for Science Buddies provided by:

Make Your Own Markers

Recommended Project Supplies
Get the right supplies — selected and tested to work with this project.
View Kit
Difficulty
Time Required Very Short (≤ 1 day)
Prerequisites None
Material Availability For your convenience a kit is available from our partner Home Science Tools.
Cost Low ($20 - $50)
Safety Adult supervisions is required while using the stove, hot water, and cutting knife.

Abstract

Do you ever wonder how markers are made? Where do all of those colors come from? Many of the colorful dyes we use come from plants. Could you create vibrant colored natural dyes? Could you turn these dyes into art supplies? You can! In this science project, become a scientist and engineer and make your own marker using homemade plant dye!

Objective

Make plant-based natural dye and use paper chromatography to compare color molecules in your plant dye to those in water-soluble markers.

Share your story with Science Buddies!

I did this project Yes, I Did This Project! Please log in (or create a free account) to let us know how things went.

Credits

Sara Agee, PhD, Science Buddies Alumni
Sabine De Brabandere, PhD, Science Buddies
  • Kool-Aid® is a registered trademark of Kraft Foods Holdings, Inc.
  • Crayola® is a registered trademark of Crayola LLC.

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Agee, Sara, and Sabine De Brabandere. "Make Your Own Markers." Science Buddies, 22 Jan. 2019, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Chem_p014/chemistry/make-your-own-markers?from=Blog. Accessed 18 Feb. 2019.

APA Style

Agee, S., & De Brabandere, S. (2019, January 22). Make Your Own Markers. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Chem_p014/chemistry/make-your-own-markers?from=Blog


Last edit date: 2019-01-22

Introduction

Many modern products—like food, plastics, art supplies, and fabric— are brightly colored. The variety of colors come from colored molecules that are mixed into the materials used to make the products. Some colored molecules are synthetic, like the famous Yellow #5, found in many candies and food products. Synthetic-colored molecules are man-made molecules. Others are made from nature and can be found in plants and other organic material.

A color molecule is a molecule that reflects a certain color of light from the Sun. This color is reflected and seen by your eye, which tells your brain that you are seeing a certain color. Oftentimes, the colors that we see are a combination of the light reflected by a mixture of different-colored molecules. Even though our eye sees the result as one color, each of the separate-colored molecules stays true to its own color in the mixture. One way to see this is to find a way to separate the individual colored molecules from the mixture, to reveal their unique colors.

Paper chromatography is a way chemists separate the components of a mixture. The components of the mixture start out in one place on a strip of paper. A liquid is allowed to run up the paper. As it does so, it takes part of the mixture with it. Some molecules run up the paper faster than others depending on their interactions with the paper and the liquid, as shown in Figure 1. As a result, components of the mixture separate and, in this case, become visible as strips of color on the chromatography paper. Imagine that you and your parents are running through a densely crowded park. You might get to the other side faster because your parents might stick around to talk to and interact with friends in the park while you might be driven to reach the other side. Similarly, molecules that interact less with the paper will run up faster and molecules that rather stick to the paper, will run more slowly up the paper strip.

Chromatography apparatus
Figure 1. Paper chromatography. Molecules are separated from each other, depending on how fast they migrate with the solvent up the chromatography paper. (Wikipedia, 2008.)

In this science project, you will learn how to extract a dye from plants. A dye is a coloring solution; in other words, it is made up of color molecules that are dissolved in a solution like water or oil. Paper chromatography will help you separate the color molecules in the dye so you can compare them to synthetic color molecules used in watercolor markers. Will the natural and synthetic dyes have the same or different color components? Can you use your homemade dye to make your own markers?

Terms and Concepts

To do this science project, you should know what the following terms mean. Have an adult help you search the Internet or take you to your local library to find out more.
  • Synthetic
  • Color molecule
  • Paper chromatography
  • Dye

Questions

  • Do you think different color molecules were used to color the dye in your watercolor marker?
  • Do you think different color molecules mix together to color homemade dye obtained from plant material?

Bibliography

News Feed on This Topic

 
, ,
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Materials and Equipment Product Kit Available

These specialty items can be purchased from our partner Home Science Tools:

  • Candy Chromatography Science Kit (1). You will need these items from the kit:
    • Chromatography paper strips; 3. The kit comes with 20 strips; additional chromatography paper can be purchased separately from our partner Home Science Tools.
    • 500 mL beaker
    • Mini binder clips (2)
    • Wooden splints
    • Pipette
  • Note: This kit contains additional items to do other chromatography science projects. See the kit instructions page for details. Downloadable materials safety data sheets (MSDS) are available for all kit chemicals if required by your science fair.

You will also need to gather these items:

  • A colorful spice, tea, plant, fruit, or vegetable (good sources should be rich in color and include, but are not limited to: blueberries, cranberries, beets, yellow onion, red onion, turmeric, black tea, coffee). Note: Be sure you have enough to cover the bottom of a saucepan.
  • Cutting board (if you need to chop your plant source into small pieces)
  • Knife (if you need to chop your plant source into small pieces)
  • Saucepan
  • Stove
  • Water
  • Bowl
  • Strainer (if using a plant source that does not dissolve in the water)
  • Ruler
  • Scissors
  • Pencil
  • Water-soluble marker to match your dye color
  • Plate
  • Lab notebook

Optional (to make your own marker):

  • Crayola Marker Refill Pack; available from Amazon.com.
  • Drinking glass
  • Tweezers
  • Hammer
  • Newspaper to protect your work area

Recommended Project Supplies

Get the right supplies — selected and tested to work with this project.
Project Kit: $34.95
View Kit

Remember Your Display Board Supplies

Artskills materials poster making kit

Poster Making Kit

ArtSkills buy now button
ArtSkills supplies trifold

ArtSkills Trifold with Header

ArtSkills buy now button
ArtSkills supplies poster lights

Poster Lights

ArtSkills buy now button


Make Your Own Markers

www.sciencebuddies.org/science-fair-projects/project-ideas/Chem_p014/chemistry/make-your-own-markers

Experimental Procedure

Note: Natural dyes can be strong, and stains can be difficult to remove from surfaces and fabric. Protect your work surface and clothes at all times as you do this project.

Prepare Your Dye

  1. Pick out a plant source to extract your dye from. Make sure you have enough of the plant source to cover the bottom of a saucepan.
  2. If your plant source is large, you will need to finely chop it into little pieces using your knife and cutting board. Have an adult help you with this step. If the color is concentrated into the skin, you might want to peel the skin off and use only the skin.
  3. Add the plant material to your saucepan and add just enough water to cover the plant source. If you selected tea or a spice, add enough water so that it is floating or mixed into the liquid and not just absorbing the water or turning into a paste.
  4. Bring the mixture to a boil and simmer covered on the stove for approximately 10-15 minutes. The pigment from the plant material will slowly begin to color the water in your saucepan.
    1. Safety Notes: Do not leave the plant-water mixture unattended on the stove. Remain nearby to make sure it does not burn. It is also a good idea to do this in a well-ventilated area, or with the stove top fan running, in case the cooking plants release bad-smelling fumes.
  5. If the color of your water is too faint, you may want to concentrate the color by removing the lid of the saucepan and continue boiling until enough liquid has evaporated, leaving behind a darker liquid.
  6. When the color of the water is rich in color, remove the saucepan from the heat and allow the dye to cool. If there are pieces of material in your saucepan, separate the dye into another bowl using a strainer and set the bowl of dye aside. If your plant source dissolved, just pour the liquid into a bowl and set it aside.
  7. Now that you have your homemade dye, you will want to compare it to a dye from a similar color of water-soluble marker.

Chromatography Test

To make sure you can compare your results, as many of your materials as possible should remain constant. This means that the temperature, type of water used, size of paper strips, where the dye is placed onto the paper, etc. should remain the same throughout the experiment.

  1. Cut the chromatography paper into strips approximately 2 centimeters (cm) wide by 6.5 cm long. Prepare a total of 6 chromatography strips this way.
    1. Science Buddies Kit: The kit comes with 20 long strips of chromatography paper; two 6.5 cm strips can be cut from each long strip.
  2. Take one of the chromatography strips and use a ruler and pencil to draw a line across it horizontally 1 cm from the bottom. This is the origin line, see Figure 2 for details. Repeat this step for all 6 of the chromatography strips.
chromatography strip with origin line
Food Science Cooking science project
Figure 2. Draw an origin line on the chromatography strip. The dye to be tested will be spotted in the middle of the origin line.
  1. Using the pipette, place a small dot of dye at the center of the origin line of one chromatography strip. The drop size should be about the size of a pencil eraser. This is your natural dye spotted sample.
    1. Use a pencil to label the chromatography strip "natural dye". Do not use a pen to label the strips: the ink might run when the water passes through the strips.
    2. Allow the spot to dry. If the spot is too faint, you will need to thicken your dye (see step 5 of the Prepare Your Dye section) and repeat step 3 on a new strip.
  2. Using the water-soluble marker that is the same color as your dye, take a new chromatography strip and make a dot the size of a pencil eraser in the middle of the origin line of the strip. This is your marker-spotted sample, as shown in Figure 3.
    1. Use a pencil to label this the chromatography strip "marker."
    2. Allow the spot to dry.
black ink spotted on paper chromatography strips for analysis
Food Science Cooking science project
Figure 3. A single spot of dye or a marker dot should be placed in the middle of the origin line on the chromatography strips.
  1. Using your binder clips, clip the two prepared chromatography strips to a wooden splint, as shown in Figure 3. Make sure the two strips do not touch each other and that the bottoms align.
  2. Rest the wooden splint on top of the 500 mL beaker so that the strips hang into the beaker and do not touch the sides of the beaker, nor the bottom of the beaker. Estimate the distance between the bottom of the beaker and the end of the chromatography strips.
  3. Remove the wooden splint with the chromatography strips and add water to the beaker so the water would just reach the end of the chromatography strips if they are placed back.
  4. Place the wooden splint back on top of the beaker. Do both strips touch the water? The goal is to have the strip just touching the surface of the water, as shown in Figure 4. As long as the water touches the strips and the water level is below the dye dots, you are good to go!
    1. If necessary, repeat step 6 and 7 until you reach the desired water level, when the ends of the strips just touch the water.
experimental setup for paper chromatography of black ink
Food Science Cooking science project
Figure 4. The ends of the chromatography strips should just touch the water.
  1. Watch as the water rise up the strips. What happens?
  2. Let the water run up until it is about 0.5 cm from the top, then remove the strips from the water by taking the wooden splint out.
  3. Let the strips dry on a clean waterproof surface, like a plate.
  4. Lay your strips side by side to compare the color components. Make a drawing of each strip in your lab notebook. What do you notice? Make a list of similarities and differences.
  5. Scientists repeat experiments several times before drawing conclusions to ensure the experiments are done correctly. You will do the same, repeating steps 3–8 two more times for a total of three trials.
  6. Analyze your results:
    1. Were your findings for the three trials identical? If so, your experiments were reproducible and you can make strong conclusions.
    2. Were your findings different? Which ones were the same in each trial and which ones varied? What can you conclude from your experiments?

Optional: Do-It-Yourself Marker

  1. Now you are ready to make your dye into a marker.
  2. Pour some of your natural homemade dye that you made earlier in the project in a glass until the dye reaches about 1 cm up the glass.
  3. Gather all your materials. Figure 5 shows everything you need to make one marker.
Materials needed to make a homemade marker with natural dye.
Figure 5. Materials needed to make your homemade marker.
  1. Start by pressing one tip into the narrow side of the marker barrel.
  2. Place a marker core into the glass filled with about 1 cm of dye and watch how it soaks up the dye. Consult Figure 6 whenever you feel unsure about a step. The illustrations can guide you through the process.
  3. Once the core is completely soaked, use your tweezers to press the core into the barrel, as shown in Figure 6.
  4. Snap on the plug and cap.
  5. Place your marker cap down on a hard surface.
  6. Ask an adult for help or supervision with this step. Give a quick hit on the plug with a hammer. Be careful not to hit any fingers!
  7. If you see that the tip soaked up the dye, you know everything snapped together well. The marker is finished!
Figures illustrating the procedure to create your own marker.
Figure 6. To make a marker, let the core soak up the dye before you place the core into the barrel. Add the plug and cap, and a quick tap of a hammer will snap it all together. If all has been done well, you will see the dye coloring the tip of your homemade marker.
  1. Now you are ready to write a message or draw a picture with your new homemade marker!

If you like this project, you might enjoy exploring these related careers:

female chemical engineer at work

Chemical Engineer

Chemical engineers solve the problems that affect our everyday lives by applying the principles of chemistry. If you enjoy working in a chemistry laboratory and are interested in developing useful products for people, then a career as a chemical engineer might be in your future. Read more
Picture of chemist

Chemist

Everything in the environment, whether naturally occurring or of human design, is composed of chemicals. Chemists search for and use new knowledge about chemicals to develop new processes or products. Read more
female chemical technician monitoring experiment

Chemical Technician

The role that the chemical technician plays is the backbone of every chemical, semiconductor, and pharmaceutical manufacturing operation. Chemical technicians conduct experiments, record data, and help to implement new processes and procedures in the laboratory. If you enjoy hands-on work, then you might be interested in the career of a chemical technician. Read more


Variations

  • Try other sources of material to get new and different colors of dye. Can you try to make yourself a complete set of homemade markers? Which materials made the best colors?
  • Another fun chromatography project is to use Kool-Aid® as a source of pigment. Conduct an experiment using your favorite flavors of Kool-Aid. Do some of the different flavors use some of the same coloring agents? Which flavors contain mixtures of different-colored molecules?
  • Some plant pigments change color when they are mixed with an acid (like vinegar) or a base (like baking soda). Conduct an experiment on different plant dyes to see which ones have this amazing color-changing ability!

For some slightly more advanced chromatography projects, see

For a fun paper chromatography activity, see

Share your story with Science Buddies!

I did this project Yes, I Did This Project! Please log in (or create a free account) to let us know how things went.

Ask an Expert

The Ask an Expert Forum is intended to be a place where students can go to find answers to science questions that they have been unable to find using other resources. If you have specific questions about your science fair project or science fair, our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.

Ask an Expert

Contact Us

If you have purchased a kit for this project from Science Buddies, we are pleased to answer your questions.

In your email, please follow these instructions:
  1. What is your Science Buddies kit order number?
  2. Please describe how you need help as thoroughly as possible:

    Examples

    Good Question I'm trying to do Experimental Procedure step #5, "Scrape the insulation from the wire. . ." How do I know when I've scraped enough?
    Good Question I'm at Experimental Procedure step #7, "Move the magnet back and forth . . ." and the LED is not lighting up.
    Bad Question I don't understand the instructions. Help!
    Good Question I am purchasing my materials. Can I substitute a 1N34 diode for the 1N25 diode called for in the material list?
    Bad Question Can I use a different part?

Contact Us

Related Links

News Feed on This Topic

 
, ,
Note: A computerized matching algorithm suggests the above articles. It's not as smart as you are, and it may occasionally give humorous, ridiculous, or even annoying results! Learn more about the News Feed

Looking for more science fun?

Try one of our science activities for quick, anytime science explorations. The perfect thing to liven up a rainy day, school vacation, or moment of boredom.

Find an Activity
Support for Science Buddies provided by: