Jump to main content

A Battery That Makes Cents


Batteries are expensive, but you can make one for exactly 24 cents! In this experiment, you will make your own voltaic pile using pennies and nickels. How many coins in the pile will make the most electricity?


Areas of Science
Time Required
Very Short (≤ 1 day)
To do this project, you will need an adult to help you use a multimeter. Science Buddies has a reference, How to Use a Multimeter, that will teach you how to use one.
Material Availability
Readily available
Very Low (under $20)
No issues

Sabine De Brabandere, PhD, and Sara Agee, PhD, Science Buddies

  • Styrofoam™ is a registered trademark of The Dow Chemical Company.


In this experiment, you will make a simple battery out of coins and test if the number of coins in the pile will affect the amount of electricity produced.


You might think that batteries are a modern invention, but batteries were one of the first ways of making electricity. Alessandro Volta discovered the first electric battery in 1800. He made a giant stack of alternating layers of zinc, blotting paper soaked in salt water, and silver. This early design for a battery became known as the voltaic pile.

Diagram of a voltaic pile

A voltaic pile is created by inserting a copper pipe through the middle of a stack of rings. Each ring has 3 layers: a base zinc plate, a piece of blotting paper, and a top silver plate. The blotting papers were soaked in salt water and the electrons from the salt were able to move across the metals into the copper pipe to create electricity.

Figure 1. This image shows the structure of a voltaic pile, which is the first design of a battery that's used to make electricity. It was discovered by Alessandro Volta in 1800. (HowStuffWorks.com, 2007.)

How does a voltaic pile make electricity? The key to electricity is the movement of particles carrying electric charge. In a voltaic pile, these particles move from one metal to the other through a solution called the electrolyte. An electrolyte is a liquid that contains particles carrying charge. Dissolved salt is an example of a good electrolyte. The charged particles in the electrolyte react with the metals, causing an electrochemical reaction, a special kind of chemical reaction that makes electrons. As electrons are particles that carry electric charge, making these electrons all move in the same direction will create a electric current or electricity. You can read more about the basics of electricity in the Science Buddies Electricity, Magnetism, & Electromagnetism Tutorial.

The two types of metals in a voltaic pile are called electrodes. As the types of metal are different, one metal will like to give off free electrons, the other will be more eager to receive electrons. This creates an electrical potential difference, also called voltage between the two types of metals. One metal becomes positively charged (the positive electrode) and the other becomes negatively charged (the negative electrode). This voltage causes electrons to move, creating an electrical current, and then you have electricity!

In this experiment, you will make your own version of the voltaic pile using two different types of coins (two different kinds of metal) and a salt-vinegar solution (the electrolyte). The metal in the coins will react with the electrolyte. As the two metals are different, one metal will like to give electrons to the other, creating electricity. How will different numbers of coins affect the amount of electricity produced? To test this, you will make piles with different numbers of coins and measuring the voltage (measured in Volt) and current (measured in Ampere) produced.

Terms and Concepts

To do this type of experiment, you should know what the following terms mean. Have an adult help you search the Internet or take you to your local library to find out more!



  • An introduction to the voltaic pile and its history can be found here:
    MIT Special Collections (n.d.). The Voltaic Pile. Retrieved June 17, 2015.
  • For an overview of what batteries are try this video:
    Mocomi Kids. (2015). How Do Batteries Work?. Retrieved June 17, 2015.
  • A more in-depth explanation of the chemistry behind voltaic cells (the more modern version of a voltaic pile) can be heard in this musical video:
    Edmonds. (2011, March 12). The Simple Voltaic Cell Circuit Song. Retrieved June 17, 2015.

Materials and Equipment

Downloadable display board template - only $1.99

  • Make a great display board with the downloadable template that is customized for this project.
  • Get printable templates for each section of your display board.
  • Save time with preformatted data tables and pre-set font sizes that look good on a display board.
  • Just enter your project information and data, print, and attach to the display board!
Get Details

Disclaimer: Science Buddies participates in affiliate programs with Home Science Tools, Amazon.com, Carolina Biological, and Jameco Electronics. Proceeds from the affiliate programs help support Science Buddies, a 501(c)(3) public charity, and keep our resources free for everyone. Our top priority is student learning. If you have any comments (positive or negative) related to purchases you've made for science projects from recommendations on our site, please let us know. Write to us at scibuddy@sciencebuddies.org.

Experimental Procedure

  1. In your lab notebook, make table like the Table 1. You will write down your measurements in this table.
Number of pennies Number of nickels Voltage (V) Current (mA)
Table 1. Use a table like this table to record your data.
  1. In a small bowl or glass, mix together 1/4 C. of vinegar (electrolyte) and 1 Tbsp. of salt (ions). Stir well.
  2. Gather some pennies and nickels, wash with a mild detergent (like dish soap), and dry. This is just a preliminary step to remove dirt and grime.
  3. Using scissors, cut a strip of aluminum foil, 2 cm x 8 cm. Fold lengthwise in three as shown in Figure 2. Aluminum foil is a good electrical conductor. It will help create good electrical contact with the bottom penny of your pile.
Aluminum foil strip folded three times lengthwise
Figure 2. An aluminum strip is folded in three lengthwise. First cut out the strip, then fold the edges in and last press them down.
  1. Using scissors, cut up a paper towel into small squares, each a little over 2 cm x 2 cm.
  2. Place a dry paper towel on a plate as shown in Figure 3. You now have all the materials to start building.
Strips of folded aluminum foil, small paper towel squares, pennies, nickels and a vinegar-salt solution
Figure 3. A few pennies and nickels, small paper-towel squares, a vinegar-salt solution, and an aluminum strip is all you need to create a coin battery.
  1. Place the aluminum strip in the middle of your plate. You will build your battery on top. This strip will make it easier to connect the multimeter later.
  2. Start building your stack:
    1. Put down a penny on the aluminum foil.
    2. Soak a paper towel square in the vinegar-salt solution. The square should be wet throughout but not dripping.
    3. Place a square of vinegar-soaked paper towel on top of the penny as shown in Figure 4.

      A penny is placed on the end of a strip of aluminum foil and covered with a wet paper towel square
      Figure 4. Start building your battery by placing a penny on the aluminum strip, followed by a soaked paper-towel square.

    4. Add a nickel on top of the square paper towel, as shown in Figure 5. This is a tiny battery. You will add 2 more coins before measuring.

      A nickel is placed on top of a penny that is covered with a wet paper towel square
      Figure 5. One battery cell consists of a penny, a soaked paper-towel square and a nickel on top.

    5. To add more coins, put down a penny on the top nickel.
    6. Repeat steps b.–d. You now have a stack of four coins (alternating pennies, wet paper towel pieces, and nickels), ending with a nickel on top.
    7. Important: do not let the paper towel squares droop over the edges of the coins and touch each other. This will create a short circuit and prevent your battery from working. If necessary, use scissors to trim the corners of the paper towel squares so they do not hang down and touch the paper towel below them.
    8. Important: paper towel squares should be wet but not dripping. Dripping electrolyte can create a short circuit. If necessary, press out excess liquid from the paper towel squares by placing them between your thumb and a finger.
  3. Make a measurement. See the Science Buddies reference How to Use a Multimeter if you need help.
    1. Connect the probes (also called leads) of the multimeter to the two ends of the battery by placing one probe tip on aluminum foil strip at the bottom of the stack and the other to the nickel on the top of the stack. Figure 6 shows the setup.
    2. Measure the voltage produced by your battery: set the multimeter to measure DC voltage (direct current) and select volts (V) as shown in Figure 6. Push down on the multimeter probe tips to make good electrical contact. Write down the your measured value (number only, not the sign) in the table like Table 1. Note positive or negative measured values are both fine. You are interested in the number value without the sign (see also step d.) Consult the Frequently Asked Questions for more advice.

      Two leads of a multimeter touch an aluminum foil strip and a stack of a penny, paper towel, and nickel to measure the voltage
      Figure 6. To measure the voltage produced by your cell, place one multimeter lead on the aluminum foil strip and the other on the top nickel.

    3. Measure the current produced by your battery: set the multimeter to measure current, select milliamps (mA) and record the current in your data table right away (the current may begin to drop slightly as the battery begins to drain). The multimeter setting to measure current is shown in Figure 7. Consult the Frequently Asked Questions for more advice.

      A multimeter measures the voltage in milliamps across an aluminum foil strip and a stack of a penny, paper towel, and nickel
      Figure 7. Set the multimeter to measure in mA to measure the current produced by your cell. Note the sign of your measurement indicates the direction of the current.

    4. Note: You might encounter a negative reading like the one in Figure 7. The sign informs you about the direction of the current. You do not need to pay attention to the sign for this project. You are interested in the magnitude ( 0.118 mA in case of the reading shown in Figure 7).
  4. Add a penny, soaked paper towel square and nickel to the stack and measure again. As you add to your stack, one important rule is to always start with a penny and end in a nickel, so the number of layers of pennies and nickels will always match. Why do you think this is necessary?
  5. Repeat step 9 for your new stack. Do not forget to record the number of pennies, the number of nickels and the measured voltage and current in your data table.
  6. Repeat steps 10 and 11 one more time. You now have a stack containing 4 pennies and 4 nickels, like the stack shown in Figure 8.
Four layers of a penny, paper towel square, and nickel are stacked on top of each other
Figure 8. This coin battery uses 4 pennies and 4 nickels.
  1. You can keep repeating steps 10 and 11, building batteries consisting of more and more coins.
  2. Analyze your data.
    1. Your data table is now complete. Can you observe a trend?
    2. Making graphs may help you visualize your data. If you need help creating graphs, try the Create a Graph website.
    3. Make a bar graph of the voltage (vertical axes) versus the number pennies (horizontal axes). Do not forget to label the axes and add a title. An example showing only one measurement is shown in Figure 9. Your graphs will show more measurements.
      A graph shows a voltage output of 0.6 for a stack of 2 pennies and 2 nickels
      Figure 9. A bar graph showing one measurement: the voltage for voltaic pile consisting of 2 pennies and 2 nickels.

    4. Make a bar graph of the current (vertical axes) versus the number pennies (horizontal axes).
    5. How do voltage and current change when you add more coins? Are your results consistent with what you expected?
  3. Repeat the entire experiment (Steps 2–14) twice more. Start all over again building a new battery from pennies and nickels. Scientists always perform several measurements to confirm their results. Do you get the same measurements each time? Do you see the same trend?
  4. Now you are ready to create your science fair display board! If you need help making your display board, a downloadable display board template for this project is available for purchase below. The template provides step-by-step guidance for creating all the usual sections of a display board: title, abstract, background information, question, hypothesis, variables, results, conclusions, and acknowledgements.


For troubleshooting tips, please read our FAQ: A Battery That Makes Cents.

icon scientific method

Ask an Expert

Do you have specific questions about your science project? Our team of volunteer scientists can help. Our Experts won't do the work for you, but they will make suggestions, offer guidance, and help you troubleshoot.


Frequently Asked Questions (FAQ)

If you are having trouble with this project, please read the FAQ below. You may find the answer to your question.
Q: The multimeter readings of current are going down while I am testing the same battery; why is that?
A: Here some points to consider
Q: The multimeter readings of voltage and/or current are going up and down, is this okay?
A: Some fluctuation (or swinging around a central value) is fine. The multimeter is reading a small voltage (a fraction of a volt) or a small current (a few milliamps). Some meters have a hard time reading this accurately. Think about how you might read the length of your house key. If you need to read it up to a fraction of a millimeter with a ruler, would you get exactly the same length each time you read the ruler, or might your values go up and down around a central value? Similarly, your meter might display slightly different readings each time it 'takes a look' and measures. Here is how to handle this situation.
  1. Leave out the last digit of your reading. In the case of Figure 6, you would note down 0.16 V, and for Figure 7, 0.11 mA.
  2. Write down the most frequently occurring reading.
Check out the next question if your measurements are going up and down a lot.
Q: My measured values seem all over the place; am I doing something wrong?
A: Several situations can lead to a measured value that is lower than what you would expect. Below is a list of things to check.


If you like this project, you might enjoy exploring these related careers:

Career Profile
Electricians are the people who bring electricity to our homes, schools, businesses, public spaces, and streets—lighting up our world, keeping the indoor temperature comfortable, and powering TVs, computers, and all sorts of machines that make life better. Electricians install and maintain the wiring and equipment that carries electricity, and they also fix electrical machines. Read more
Career Profile
Chemical engineers solve the problems that affect our everyday lives by applying the principles of chemistry. If you enjoy working in a chemistry laboratory and are interested in developing useful products for people, then a career as a chemical engineer might be in your future. Read more
Career Profile
Just as a potter forms clay, or a steel worker molds molten steel, electrical and electronics engineers gather and shape electricity and use it to make products that transmit power or transmit information. Electrical and electronics engineers may specialize in one of the millions of products that make or use electricity, like cell phones, electric motors, microwaves, medical instruments, airline navigation system, or handheld games. Read more
Career Profile
Electrical engineering technicians help design, test, and manufacture electrical and electronic equipment. These people are part of the team of engineers and research scientists that keep our high-tech world going and moving forward. Read more

News Feed on This Topic

, ,

Cite This Page

General citation information is provided here. Be sure to check the formatting, including capitalization, for the method you are using and update your citation, as needed.

MLA Style

Science Buddies Staff. "A Battery That Makes Cents." Science Buddies, 3 Mar. 2022, https://www.sciencebuddies.org/science-fair-projects/project-ideas/Energy_p015/energy-power/make-a-battery-from-coins?from=Blog. Accessed 22 May 2022.

APA Style

Science Buddies Staff. (2022, March 3). A Battery That Makes Cents. Retrieved from https://www.sciencebuddies.org/science-fair-projects/project-ideas/Energy_p015/energy-power/make-a-battery-from-coins?from=Blog

Last edit date: 2022-03-03
Free science fair projects.