Abstract
Are you a snow aficionado? What atmospheric conditions produce light, powdery snow, and what conditions produce heavy, wet snow? This project shows you how to use data from daily balloon soundings of the atmosphere and your own snow measurements to find out.Summary
Andrew Olson, Ph.D., Science Buddies
Sources
This project is based on:- Haby, J., date unknown. Basic Meteorology Experiments: Experiment #9: Snow-to-Liquid Ratio, TheWeatherPrediction.com. Retrieved March 20, 2007.

Objective
The goal of this project is to investigate the effect of atmospheric temperature on snowfall depth.Introduction
If you're lucky enough to live in a place that gets snow in winter, you know that the feel of the snow can vary a lot. Sometimes it can be light and fluffy, and other times heavy and wet. The light, fluffy snow has less water content than the heavy snow. What accounts for these differences?
One possibility might be the temperature of atmosphere in the clouds where the snow forms. Another possibility might be the temperature of the atmosphere through which the snow falls on its way to the ground. You may be wondering, "How in the world am I going to measure the temperature of the clouds?" Fortunately, you don't have to make the measurements yourself. The National Oceanic and Atmospheric Administration (NOAA) has already done it for you. Twice a day all over the U.S., weather balloons are used to take atmospheric soundings. The data from these soundings is available online (Unisys Corp., 2005).
Figure 1 shows an example of an upper air sounding plot. This is a standard graph used by meteorologists to analyze data from a balloon sounding. There is a lot of additional information in the graph, but basically it is a plot of temperature (x-axis) vs. height (y-axis). The white data line on the left shows the dewpoint vs. pressure, and the white data line on the right shows the temperature vs. pressure. The pressure (in millibars, mb) is shown on the y-axis in blue lettering, and the height (in m) is shown in white lettering. A sounding plot is also called a "Skew T" plot, because the temperature axis is plotted at an angle (i.e., skew) of 45°. The temperature lines of the Skew T are in blue (at 45°).

Figure 1. Example of an upper air sounding plot from the Unisys Weather webpage. Data shown are from International Falls, MN, March 23, 2007.
Atmospheric pressure decreases with height above the Earth's surface. The higher you go, the less atmosphere remains above you, so the pressure decreases. "Meteorology uses pressure as the vertical coordinate and not height. This works out better for thermodynamic computations that are done on a regular basis. Pressure decreases in the atmosphere exponentially as height increases reaching 0 pressure in space. The standard unit of pressure is millibars (mb or hectopascals-hPa) of which sea level is around 1015 mb. Here is a table of pressure levels and approximate heights (Unisys Corp., 2001):"
Pressure | Approximate Height | Approximate Temperature | ||
(mb) | (m) | (ft) | (°C) | (°F) |
1015 (sea level) |
0 | 0 | 15 | 59 |
1000 | 100 | 300 | 15 | 59 |
850 | 1500 | 5000 | 5 | 41 |
700 | 3000 | 10000 | −5 | 23 |
500 | 5000 | 18000 | −20 | −4 |
300 | 9000 | 30000 | −45 | −49 |
200 | 12000 | 40000 | −55 | −67 |
100 | 16000 | 53000 | −56 | −69 |
Figure 2 shows how to read the temperature at a chosen pressure level (height). On the y-axis, find the pressure level (in mb) where you want to know the temperature. Follow the horizontal pressure line over until it intersects with the temperature plot (right-hand data plot, in white). Then follow the 45° temperature line down and to the left to the temperature axis. In the example below, the temperature at 700 mb was about −11°C.

Figure 2. Reading the temperature of the atmosphere at 700 mb (3022 m) from the sounding plot. Follow the horizontal pressure line to where it intersects with the temperature plot (right hand data line, in white). Then follow the 45° temperature line down and to the left to the temperature axis. In this example, the temperature at 700 mb was about −11°C.
There is a lot more information in the sounding plot, but it isn't important for this project. If you want to learn more about sounding plots, do more research about them online.
In this project you will use atmospheric sounding data combined with your own measurements of the snow depth to liquid ratio to find out if there is a relationship between atmospheric temperature and snow quality.
Terms and Concepts
To do this project, you should do research that enables you to understand the following terms and concepts:- Troposphere
- Pressure
- Temperature
- Snowflake structure
Questions
- Where does snow typically form in the atmosphere?
Bibliography
These websites have information about the atmosphere:
- Sharp, Tim. (2017, October 13). Earth's Atmosphere:Composition, Climate & Weather. Space.com. Retrieved March 3, 2021.
- Cirjak, Antonia. (2020, May 1). What Are The 5 Layers Of The Earth's Atmosphere?. Worldatlas.com. Retrieved March 3, 2021.
For current and archived sounding plots:
- NOAA Storm Prediction Center. (n.d.). Observed Sounding Archive. National Oceanic and Atmospheric Administration. Retrieved January 1, 2019.
This project is based on:
- Haby, J. (n.d.). Basic Meteorology Experiments: Experiment #9: Snow-to-Liquid Ratio, TheWeatherPrediction.com. Retrieved March 20, 2007.
Materials and Equipment
To do this experiment you will need the following materials and equipment:- Tall cylindrical can for taking snow samples
- Flat cover for the can (could be plastic or sheet metal)
- A place to collect undisturbed snow from a snowfall event
- A ruler
- Computer with Internet access
Experimental Procedure
- After a snowfall, pick a location to collect snow that will represent the average snow depth for the event.
- Place the can upside down and push it down through the snow until it reaches the ground surface.
- Cover the opening of the can with your plastic or sheet metal cover.
- Bring the can upright, carrying the snow with it. The accumulation of snow in the can should be similar to what is on the ground.
- Measure the snow depth on the ground (in cm), close to where the sample was taken.
- Bring the can inside and wait for the snow to melt.
- Measure the depth of the liquid water in the can (in cm).
- Calculate the ratio between the snow depth and the depth of the liquid water. For example, if the snow depth was 30 cm and you measured 2 cm of liquid water in the can after melting, the ratio would be 15:1 (15 cm of snow for every cm of liquid water).
- Repeat the measurement for several snow events.
- For each snow event, you will also need to examine the upper air sounding that is closest to your location and to the time of the snowfall event.
- Examine the temperature profile for the lower troposphere (surface to 700 millibars pressure).
- Upper air sounding plots are available in numerous places online, for example from the National Oceanic and Atmospheric Administration: https://www.spc.noaa.gov/exper/soundings/. You will need to find sounding data for the date of your snowfall.
- See the Introduction for instructions on reading the sounding plot.
- Is there a relationship between the temperature in the lower troposphere at the time nearest to the snowfall and the snow depth:liquid depth ratio? To find out, make graphs of snow:liquid ratio (y-axis) vs. atmospheric temperature for different pressures.

Ask an Expert
Careers
If you like this project, you might enjoy exploring these related careers: