# Volleyball Machine Challenge for High School

## Summary

9th-12th
Group Size
2-4 students
Active Time
2-3 hours
Total Time
2-3 hours
Area of Science
Physics
Engineering Challenge
Key Concepts
Engineering design
Credits
Ben Finio, PhD, Science Buddies

This engineering challenge is based on an internal competition designed by employees at Fluor Corporation.

Volleyball Machine: 2019 Engineering Challenge

## Overview

Teach your students about the engineering design process with this fun lesson plan. They will design and build two "volleyball machines" that launch a ping pong ball back and forth over a net. While the 2019 Engineering Challenge is over, your students can still try this project and compare their scores to top scores from around the world! Teachers, note that elementary school and middle school versions of this lesson plan are also available.

Looking for this year's challenge? Check out our main Engineering Challenge page for all the latest information, including a chance to win a cash prize for your school or nonprofit!

## Learning Objectives

• Design and build "volleyball machines" based on specified criteria.
• Iteratively test and modify the machines to improve their performance.

## NGSS Alignment

This lesson helps students prepare for these Next Generation Science Standards Performance Expectations:
• High School - Science & Engineering Practices
This lesson focuses on these aspects of NGSS Three Dimensional Learning:

 Science & Engineering Practices Asking Questions and Defining Problems. Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. Planning and Carrying Out Investigations. Plan an investigation or test a design individually and collaboratively to produce data to serve as the basis for evidence as part of building and revising models, supporting explanations for phenomena, or testing solutions to problems. Consider possible confounding variables or effects and evaluate the investigation's design to ensure variables are controlled. Disciplinary Core Ideas Crosscutting Concepts

## Materials

Construction Materials
Item Maximum Quantity Point cost (each)
Corrugated cardboard (max size 12"x12" or 30x30 cm) 2 10
Large paper or plastic cups (16–18 oz, or about 450–500 mL) 10 5
Wooden craft sticks (4 ½" or 11.5 cm) 20 1
Paper (printer/copier paper, not construction paper or cardstock; letter or A4 size) 20 1
Wooden pencils (circular or hexagonal cross-section, approx. 7–8" or 18–20 cm length) 20 1
Rubber bands (size 32, 3" long unstretched and 1/8" wide) 10 2
Roll of clear adhesive tape (Scotch® tape or equivalent, 1/2" or 3/4" width, max length 500") 1 10
 Tools and Testing Materials (no point cost) Item Notes Paper and pencil For sketching design ideas Scissors For cutting construction materials Sheets of paper (2) For making net Tape For holding net to floor/table Ruler For checking net dimensions Ping pong ball
Table 1. Materials allowed for building a volleyball machine for the 2019 Engineering Challenge.

Note: material costs are not pro-rated. For example, if you use any tape, it still costs the entire 10 points, even if you do not use the whole roll.

## Background Information for Teachers

This section contains a quick review for teachers of the science and concepts covered in this lesson.

In this lesson, your students will use readily available craft/office supplies to build two machines that can launch a ball back and forth over a net, similar to the game of volleyball (although in this case, the machines are allowed to catch the ball). The 2019 Engineering Challenge had specific rules and limits on what materials students could use. You can choose to follow the same rules, or just use this lesson as an inspiration. If you have not already, watch this video for an introduction to the challenge.

This challenge allows you to explore some interesting topics in physics and engineering. Rather than explain these topics in detail, this background section will give you a brief overview of each one, and you can decide which, if any, to address with your students. There is more information about these topics in the Additional Background section.

• Simple machines: use the project to learn about simple machines like the lever and the inclined plane. How can simple machines be combined to form a more complex machine that can launch a ball?
• Projectile motion is a classic topic in physics classes. How do the initial velocity and launch angle of the ball affect its range? What trajectory (i.e. a high, steep trajectory or a low, shallow trajectory) makes it easier to catch the ball?
• Energy is another classic physics topic. The ball needs kinetic energy, the energy of motion, to fly through the air. Where will that energy come from? It could come from elastic potential energy, the energy stored in a stretched material, like a rubber band. It could come from gravitational potential energy, the energy stored in an object that is raised up off the ground. Or, the energy could come from work that you do with your hand by exerting a force.
• Engineering design: you can also use this project to walk your students through the engineering design process. They probably will not build a perfect machine on their first try. Instead, they will need to iteratively test and redesign their launcher/receiver in order to improve the design.

## Lesson Plan Variations

Top
Free science fair projects.