Jump to main content

High School, Biotechnology Lesson Plans (6 results)

Yogurt, biofuel, biodegradable plastics, and antibiotics are all examples of products based on biotechnology research and manufacturing techniques. What else will we be able to create as we use biotechnology in new ways?

Filter by
Lesson Plan Grade: 6th-12th
1
2
3
4
5
5 reviews
In this lesson plan, students will take a closer look at the most recent developments in gene editing. Specifically, they will learn about the CRISPR technology using various interactive simulations and other resources. Based on their gained knowledge, students will create a model of the CRISPR-Cas9 components and create a stop-motion animation video of the molecular mechanism of CRISPR-Cas9. Remote learning adaptation: This lesson plan can be conducted remotely. Students can work… Read more
NGSS Performance Expectations:
  • MS-LS4-5. Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.
  • HS-LS1-1. Construct an explanation, based on evidence, for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.
Featured
Lesson Plan Grade: 6th-8th
1
2
3
4
5
7 reviews
Junkbots are easy-to-build robots that you can make using a simple circuit and some recyclable materials. In this lesson, your students will learn about engineering design as they compete to build the fastest robot. No previous robotics experience is required! Read more
NGSS Performance Expectations:
  • MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Lesson Plan Grade: 9th-12th
1
2
3
4
5
2 reviews
This lesson introduces students to the relationships between chromosomes, genes, and DNA molecules. Using the example of a strawberry, it also provides activities that clearly show how changes in the DNA of an organism, either naturally or artificially, can cause changes. Read more
NGSS Performance Expectations:
  • HS-LS3-3. Heredity: Inheritance and Variation of Traits
    Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.
New
Lesson Plan Grade: 6th-12th
Create a two-part system for filtering greywater. Teams will focus on communication and systems engineering as they build separate components to filter solid and liquid waste and then combine them into one device. Learning Objectives Students will: Consider the potential effects of drought and how greywater could be part of the solution. Design a system for filtering out solid waste or liquid waste. Consider effective communication strategies with their team. Collaborate on their design… Read more
Lesson Plan Grade: 9th-12th
Students will compare and contrast methods of selective plant breeding, describe the scientific process of creating a genetically modified plant, compare genetically modified soybean seeds to conventional soybean seeds, describe the impact weeds have on plant growth, and understand how a genetically modified seed can help farmers manage weeds. Read more
NGSS Performance Expectations:
  • HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.
  • HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.
Lesson Plan Grade: 9th-12th
Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child's body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges… Read more
NGSS Performance Expectations:
  • HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.
  • HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.
  • HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
  • HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
Lesson Plan Grade: 9th-12th
1
2
3
4
5
3 reviews
This lesson compares and contrasts prokaryotic and eukaryotic cells and examines the form and function of the plasmid found in prokaryotic cells. Students will then use these principles to simulate how a desirable gene can be isolated and inserted into a plasmid as one step in the process of creating a genetically modified organism (GMO). Read more
NGSS Performance Expectations:
  • HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.
Lesson Plan Grade: 9th-12th
Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.Engineering Connection Bacteria are the most common organisms modified by genetic engineers due to… Read more
NGSS Performance Expectations:
  • HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.
1
Top
We use cookies and those of third party providers to deliver the best possible web experience and to compile statistics.
By continuing and using the site, including the landing page, you agree to our Privacy Policy and Terms of Use.
OK, got it
Free science fair projects.