Larger-than-life Robots on Traffic Control Duty
Giant metal traffic control robots installed on busy streets in Africa remind students that robotics engineering tackles projects and issues that may require very big OR very small solutions.

Recent robotics engineering projects at Science Buddies have shot my perspective on robotics with a shrinking serum, something that's taken my preconceived ideas about robots, drawn largely from growing up with the Jetsons on television and C-3PO and R2-D2 on the big screen, and tossed them down a long Alice and Wonderland-styled tunnel where they have emerged miniaturized and decidedly non-humanoid. Think of the skittering crew of cookie robots in Despicable Me (2010). Small. Fast. Stealthy. Focused. Hungry. Bots on a mission.
This is a new class of bots, a far cry from bots like The Iron Giant (1999), Johnny 5 in Short Circuit (1986), and Wall-E (2008). Whereas those bots won us over with their human-like qualities and similarities, not all bots are built at that scale. Both on- and off-screen, the bots that have been crossing my radar lately have been small, and smaller, and then even smaller, reaching coin-sized proportions most recently in my interview with Dani Ithier, a student in Harvard's Microrobotics Lab, where they are working on bug-inspired bots.
Smaller and smaller, a tale of shrinking robots, until a CNN story and images of the "Robo Cops" installed in Kinshasa, the capital of the Democratic Republic of Congo, crossed my desk.
Two towering aluminum bots have been installed in the middle of congested highways to help alleviate traffic flow problems. Those two bots, eight feet tall and bearing familiar human facial features, remind me, visually, of bots from old-school science fiction. These traffic cops look like the kind of (non-functional) bots kids construct out of cast-off parts from the garage and cardboard boxes salvaged from the recycling bin, but these bots represent sophisticated engineering. The traffic robots are reportedly powered by solar panels, have on-board surveillance cameras, and can talk. This is high-tech, robotic traffic control being conducted by robots that "come sporting sunglasses like real cops," reports India Today Online. From up high (eight feet plus the pedestals on which they stand), these robots are taking on the combined roles of traffic cop, streetlight, and pedestrian walk signal, all in an effort at reigning in a mounting traffic problem.
An Infinite Number of Designs—and Functions
The story (and image) of Kinshasa's robo cops is an excellent reminder about the breadth of functionality and design for robotics engineers. Smaller is not always better and it not always the solution. Many robots are designed to do a very specific task. They may or may not need to have a full set of "humanoid" body parts and appendages. A robotic hand, for example, may be developed to do a single, focused task, and the parameters of that task—What needs to be picked up? How heavy is the item? How far does it need to be moved?—may guide the design. Specifying the requirements of a solution is an important step in the engineering design process. Students can explore this kind of design and the engineering issues that arise in projects like Grasping with Straws: Make a Robot Hand Using Drinking Straws and Squishy Robots: Build an Air-Powered Soft Robotic Gripper.
Robots for Safety
Looking at the Kinshasa robo cops also highlights the use of robotics in ensuring safety, through prevention, through ongoing presence and monitoring, and through disaster relief. Students can explore safety-related robotics engineering and design in hands-on science projects like these:
- LED Traffic Glove: Build a Safety Device to Direct Traffic: experiment with e-textiles by building a wearable light-up glove that is wired for safety.
- Robots to the Rescue! Build & Test a Search-and-Rescue Robot: experiment with a toy remote-controlled vehicle to better understand issues related to robot navigation.
- X Marks the Spot: Build a Robot to Protect Your Treasures: experiment with a LEGO® Mindstorms® robot designed to guard something to learn more about sensors in robotics engineering.
- Smart Medicine Cabinet: Build a Sensor That Reminds Patients When to Take Medication *: experiment with sensors and microcontrollers to design a medicine cabinet that can help ensure a patient remembers to take necessary medications.
Categories:
You Might Also Enjoy These Related Posts:
- Rev Up STEM Learning with Car Science Projects
- Popsicle Stick STEM Projects
- Inspiring AAPI Scientists and Engineers - Asian American and Native Hawaiian/Pacific Islander Heritage Month
- Arduino Science Projects and Physical Computing
- 5 STEM Activities with Marshmallow Peeps
- New Green Chemistry Science Projects—Sustainable Science for Students
- Student Science Project - Designing and Coding a Video Game to Help People with Alzheimer's
- March Madness Basketball Science Projects: Sports Science Experiments