Seventh Grade, Sports Science Science Projects (38 results)

Top athletes and coaches use a whole lot of science and engineering to improve performance and increase the chances of winning. Technologies like better tennis rackets, sleeker running and swimming outfits, and aerodynamic soccer balls, mean that current athletes are breaking world records left and right. Add to that better nutrition and science-based training regimes and you have an era of amazing athletes! Explore how science and engineering impact your favorite sport.

Filter by
Log in to add favorite
Science Fair Project Idea
Do corked bats really hit the ball further? What about other materials? Here's a project to find out. Read more
Log in to add favorite
Science Fair Project Idea
This project can apply to soccer, hockey, baseball and many other sports. What is the effect of stopping the kick/shot/swing at the moment of impact vs. following through? Think of a way to measure the outcome in each case, and explain your results. (idea from Gardner, 2000, 83-85; for more information with regard to specific sports, see: Barr, 1990, 12-14; Gay, 2004, 142-144; Adair, 2002, 30.) Read more
Log in to add favorite
Science Fair Project Idea
If you have a multi-speed bike, you know that you can make it easier or harder to pedal just by shifting gears. Ever wonder how that works? You can investigate this a number of ways. A basic approach is to use a selection of spools of thread (with different diameters), a board with two nails, and a rubber band. Place a spool over each nail, and put the rubber band over them. Mark the 12:00 position on each spool so that you can count revolutions. Turn one spool through a full circle and… Read more
Log in to add favorite
Science Fair Project Idea
You'll need: a puck, a hockey stick, a tape measure, at least one helper with a stopwatch and an empty rink. Have your friend start the watch just as you make contact with the puck, and stop it when the puck hits the boards. Measure the distance and divide by the time to get the speed of the puck. With two helpers and two stop watches, you can time the puck at center ice and at the far end. Are the speeds the same? How about if you don't follow through, but stop your stick as soon as it… Read more
Log in to add favorite
Science Fair Project Idea
Tennis racquets, baseball bats and golf clubs all vibrate when they hit the ball. You can often feel it in your hands, particularly if you "mis-hit" the ball. You can find the point(s) on your racquet, bat or club—called the "sweet spot"—that minimize unwanted vibrations. Low-tech method: hang the racquet or bat straight up and down with a string from its handle. Lightly hold the handle with your thumb and forefinger and have a helper sharply tap the bat, strings or club face… Read more
Log in to add favorite
Science Fair Project Idea
You can model this with an ice cube sliding down a plank: how high do you need to lift the end of the plank before the ice cube starts to slide? Try this with one side plain wood and the flip side waxed wood (use paraffin wax, candle wax or ski wax). Make sure both sides are equally smooth to start with. Do at least three trials. More advanced: using what you know about the forces acting on the ice cube, derive equations to calculate the coefficient of friction for each case. Variation:… Read more
Log in to add favorite
Science Fair Project Idea
Enjoy the thrill and pace of speed skating, do you? Well, this project's for you. Fast turns around the track become your laboratory tests in these experiments whether you skate on ice, wood, or pavement. The goal is to determine which type of turns are best in a race-tight, medium, or wide-and then to figure out why. You'll analyze the speed and stability of your turns and compare your results with those of a few fellow skaters. This is a friendly competition where the prize is learning… Read more
Log in to add favorite
Science Fair Project Idea
Use a video camera to analyze the angle of lift with different clubs. Measure the distance the ball travels. Be sure to conduct a sufficient number of trials with each club so that your results are consistent. This can also be a great way to work on your swing! (Idea from Goodstein, 1999, 83-85.) Read more
< 1 2 3 4
Free science fair projects.