High School, Sports Science Science Projects (26 results)
Top athletes and coaches use a whole lot of science and engineering to improve performance and increase the chances of winning. Technologies like better tennis rackets, sleeker running and swimming outfits, and aerodynamic soccer balls, mean that current athletes are breaking world records left and right. Add to that better nutrition and science-based training regimes and you have an era of amazing athletes! Explore how science and engineering impact your favorite sport.
Select a resource
Sort by
|
The makers of sports drinks spend tens to hundreds of millions of dollars advertising their products each year. Among the benefits often featured in these ads are the beverages' high level of electrolytes, which your body loses as you sweat. In this science project, you will compare the amount of electrolytes in a sports drink with those in orange juice to find out which has more electrolytes to replenish the ones you lose as you work out or play sports. When you are finished, you might even…
Instant cold packs are popular with coaches and parents for treating minor bumps and bruises. The instant cold packs are not pre-cooled—you just squeeze the cold pack and its starts to get cold. So how does it work? In this chemistry science fair project, you will investigate the chemical reaction that occurs in instant cold packs.
If you've ever played or watched basketball, you might already know that your chances of successfully banking a shot on the backboard are higher in certain positions on the basketball court, even when keeping the distance from the hoop the same. Ever wondered what would account for this? Do you think you could actually explain this using geometry? This science project will put your knowledge of geometry and algebra to good use. You will calculate and quantify how much more difficult it is to…
So baseball's your game? Well, slugger, science and math abound in baseball. Just look at the zillions of "stats." In this project, you can produce some interesting baseball statistics of your own and perhaps settle a long-standing debate. You'll set up experiments at your local playing field to find out which type of bat is better, wood or aluminum. Play ball, and batter up!
Read more
Everyone's used to the idea that people are either right-handed or left-handed for particular tasks. That is, one hand is preferred (or dominant) over the other for a particular task. Did you know that people also have a dominant eye? This project is designed to look for consequences of having the dominant hand and eye on the same side of the body (uncrossed) vs. having the dominant hand and eye on opposite sides of the body (crossed).
Imagine a symmetrical grid of nine points superimposed over the ball. Kicking the ball squarely on the center point imparts no spin, but kicking on any of the other points will impart spin on the ball. How will the resulting spin affect the trajectory of the ball for each of the 8 outer grid points? Kicking the ball with a sliding motion of the foot is another way to impart spin. Once you've made your predictions, you can set up to test them with a soccer ball, video camera and a tape…
Read more
There is a bewildering selection of different golf balls to choose from for playing the game. Some less expensive, some more expensive, all with different claims for the advantages they will bring to your game. This project can help you determine which type of golf ball is right for you.
Read more
If your idea of a great weekend morning is taking some practice swings at a driving range, or heading out to the links to play a round, this could be a good project for you. This project is designed to answer the question, what is the relationship between club loft angle and the distance that the ball travels when struck.
For this project, you'll use a baseball as a pendulum weight, studying the motion of the ball with and without spin. Wrap a rubber band around the ball, and tie a string to the rubber band. Fasten the string so that the ball hangs down and can swing freely. Mark a regular grid on cardboard, and place it directly beneath the ball to measure the motion. You can also time the oscillations with a stopwatch. Lift the ball along one of the grid axes, and let it go. Observe the motion and record…
Read more
When the punter is trying to hit the "coffin corner" (within the opposing team's 10-yard line), out of bounds, what is the best angle to kick the ball for correct distance and maximum "hang time?" (For more information on the physics involved, see: Gay, 2004, Chapters 4 and 5.)
Read more
|
Explore Our Science Videos
Do Veritasium's Helicopter Rope Experiment at Home
Cotton Ball Launcher - Fun STEM Activity
Build A Wall Marble Run!