Ninth Grade, Pure Mathematics Science Projects (19 results)
Wikipedia defines mathematics as "the study of quantity, structure, space and change." With a definition like that, it's easy to see why math is often called "the language of science." Math is essential for analyzing and communicating scientific results, and for stating scientific theories in a way that is clear, succinct, and testable.
Select a resource
Sort by
|
If you've ever played or watched basketball, you might already know that your chances of successfully banking a shot on the backboard are higher in certain positions on the basketball court, even when keeping the distance from the hoop the same. Ever wondered what would account for this? Do you think you could actually explain this using geometry? This science project will put your knowledge of geometry and algebra to good use. You will calculate and quantify how much more difficult it is to…
The "impossible arrow" is an amazing optical illusion: an arrow that always seems to point to the right, even when you rotate it 180°. If you place the arrow in front of a mirror, however, its reflection points to the left! How does this illusion work? Can you design your own "impossible" shapes? Try this project and find out!
If you like solving challenging puzzles, this could be a good project for you. In this project you will research different methods for solving a Rubik's cube, and then do an experiment to compare them to each other. Which method works fastest?
If you have ever tried to hit a target (such as a trash can) with a wad of paper, you know that aim is everything. But it is not always easy to get it right every time! Missing is not that big a deal with a wad of paper, but what if you were in an invading army in the Middle Ages, using a catapult to hurl huge stones and knock down castle walls? For a successful invasion, it would be important to know exactly how far, and how reliably, a catapult could launch a projectile. In this project you…
This project challenges you to figure out how to make geometric patterns with Rubik's Cube. Leaving your cube in one of these positions makes it much more tempting to pick it up and 'fix' it. Can you figure out how to make a checkerboard, or a cube-within-a-cube? Can you make only the center piece a different color from the rest? Can you figure out how to solve the cube from these positions?
Have you ever wondered how playing in a certain stadium affects how well the athletes perform? Major League Baseball (MLB) is played in ballparks that have their own individual quirks when it comes to the exact layout of the field. How an individual ballpark affects player performance, which is known as ballpark effects, is heavily investigated in the field of baseball. To name just a few parks and their different traits, Fenway Park (the long-time home ballpark for the Boston Red Sox in…
How do you turn a 2-dimensional piece of paper into a 3-dimensional work of art? Origami, the classical art of Japanese paper folding, is loaded with mathematical themes and concepts. What are the common folds in origami, and how do they combine to create 3-dimensional structure? Can you classify different types of origami into classes based upon the types of folds they use? Can you show Kawasaki's Theorem, that if you add up the angle measurements of every other angle around a point, the sum…
Read more
Do you like to play cards? Here's a project that will get you thinking about strategy in card games and help you become a better card player.
Read more
A fractal is, "a rough or fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a reduced/size copy of the whole" (Mandelbrot, 1982). There are many different fractal patterns, each with unique properties and typically named after the mathematician who discovered it. A fractal increases in complexity as it is generated through repeated sets of numbers called iterations. There are many interesting projects exploring fractal geometry that go beyond…
Read more
A magic square is an arrangement of numbers from 1 to n2 in an n x n matrix. In a magic square each number occurs exactly once such that the sum of the entries of any row, column, or main diagonal is the same. You can make several magic squares and investigate the different properties of the square. Can you make an algorithm for constructing a Magic Square? Can you show that the sum of the entries of any row, column, or main diagonal must be n(n2+1)/2? Are there any other hidden properties of a…
Read more
|
Explore Our Science Videos
Explore Reaction Kinetics With the Iodine Clock Reaction
How to Make Elephant Toothpaste
4 Easy Robot Science Projects for Kids